- Brown, E.D. Is the GAIN Act a turning point in new antibiotic discovery? Can. J. Microbiol. 59, 153–156 (2013).
Article CAS PubMed Google Scholar
- Haselbeck, R. et al. Comprehensive essential gene identification as a platform for novel anti-infective drug discovery. Curr. Pharm. Des. 8, 1155–1172 (2002).
Article CAS PubMed Google Scholar
- Boucher, H. et al. 10 × ′20 Progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin. Infect. Dis. 56, 1685–1694 (2013).
Article PubMed PubMed Central Google Scholar
- Payne, D.J., Gwynn, M.N., Holmes, D.J. & Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).
Article CAS PubMed Google Scholar
- Burdine, L. & Kodadek, T. Target identification in chemical genetics: the (often) missing link. Chem. Biol. 11, 593–597 (2004).
Article CAS PubMed Google Scholar
- Parsons, A.B. et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62–69 (2004).
Article CAS PubMed Google Scholar
- Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Hoon, S. et al. An integrated platform of genomic assays reveals small-molecule bioactivities. Nat. Chem. Biol. 4, 498–506 (2008); erratum 4, 632 (2008).
Article CAS PubMed Google Scholar
- Lum, P.Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004).
Article CAS PubMed Google Scholar
- Li, X. et al. Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem. Biol. 11, 1423–1430 (2004).
Article CAS PubMed Google Scholar
- Pathania, R. et al. Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nat. Chem. Biol. 5, 849–856 (2009).
Article CAS PubMed Google Scholar
- Hua, Q., Yang, C., Oshima, T., Mori, H. & Shimizu, K. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl. Environ. Microbiol. 70, 2354–2366 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Tao, H., Bausch, C., Richmond, C., Blattner, F.R. & Conway, T. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181, 6425–6440 (1999).
CAS PubMed PubMed Central Google Scholar
- Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3, 623–628 (2006).
Article CAS PubMed Google Scholar
- Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).
Article PubMed PubMed Central Google Scholar
- Chamberlain, L.M., Strugnell, R., Dougan, G., Hormaeche, C.E. & Demarco de Hormaeche, R. Neisseria gonorrhoeae strain MS11 harbouring a mutation in gene aroA is attenuated and immunogenic. Microb. Pathog. 15, 51–63 (1993).
Article CAS PubMed Google Scholar
- Cuccui, J. et al. Development of signature-tagged mutagenesis in Burkholderia pseudomallei to identify genes important in survival and pathogenesis. Infect. Immun. 75, 1186–1195 (2007).
Article CAS PubMed Google Scholar
- Mei, J.M., Nourbakhsh, F., Ford, C. & Holden, D. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399–407 (1997).
Article CAS PubMed Google Scholar
- Polissi, A. et al. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66, 5620–5629 (1998).
CAS PubMed PubMed Central Google Scholar
- Samant, S. et al. Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog. 4, e37 (2008).
Article PubMed PubMed Central Google Scholar
- Cersini, A., Salvia, A.M. & Bernardini, M.L. Intracellular multiplication and virulence of Shigella flexneri auxotrophic mutants. Infect. Immun. 66, 549–557 (1998).
CAS PubMed PubMed Central Google Scholar
- Ho, J.M. & Juurlink, D. Considerations when prescribing trimethoprim-sulfamethoxazole. CMAJ 183, 1851–1858 (2011).
Article PubMed PubMed Central Google Scholar
- Pittard, J. & Yang, J. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds. Böck, A. et al.) (ASM Press, Washington, D.C., 2008).
- Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).
Article CAS PubMed Google Scholar
- Longley, D.B., Harkin, D.P. & Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330–338 (2003).
Article CAS PubMed Google Scholar
- Handschumacher, R.E. Orotidylic acid decarboxylase: inhibition studies with azauridine 5′-phosphate. J. Biol. Chem. 235, 2917–2919 (1960).
CAS PubMed Google Scholar
- Cobb, J.R., Pearcy, S. & Gholson, R. Metabolism of 6-aminonicotinic acid in Escherichia coli. J. Bacteriol. 131, 789–794 (1977).
CAS PubMed PubMed Central Google Scholar
- Richmond, M.H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol. Rev. 26, 398–420 (1962).
CAS PubMed PubMed Central Google Scholar
- Eidinoff, M.L., Knoll, J.E., Marano, B. & Cheong, L. Pyrimidine studies I. Effect of DON (6-diazo-5-oxo-L-norleucine) on incorporation of precursors into nucleic acid pyrimidines. Cancer Res. 18, 105–109 (1958).
CAS Google Scholar
- Levenberg, B., Melnick, I. & Buchanan, J. Biosynthesis of the purines. XV. The effect of aza-l-serine and 6-diazo-5-oxo-l-norleucine on inosinic acid biosynthesis de novo. J. Biol. Chem. 225, 163–176 (1957).
CAS PubMed Google Scholar
- Ahluwalia, G.S., Grem, J., Hao, Z. & Cooney, D. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol. Ther. 46, 243–271 (1990).
Article CAS PubMed Google Scholar
- Wargel, R.J., Shadur, C.A. & Neuhaus, F.C. Mechanism of d-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J. Bacteriol. 103, 778–788 (1970).
CAS PubMed PubMed Central Google Scholar
- Zawadzke, L.E., Bugg, T.D. & Walsh, C.T. Existence of two D-alanine:D-alanine ligases in Escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry 30, 1673–1682 (1991).
Article CAS PubMed Google Scholar
- Neuhaus, F.C. & Lynch, J.L. The enzymatic synthesis of D-alanyl-D-alanine. 3. on the inhibition of D-alanyl-D-alanine synthetase by the antibiotic D-cycloserine. Biochemistry 3, 471–480 (1964).
Article CAS PubMed Google Scholar
- Strominger, J.L., Ito, E. & Threnn, R.H. Competitive inhibition of enzymatic reactions by oxamycin. J. Am. Chem. Soc. 82, 998–999 (1960).
Article CAS Google Scholar
- Stokstad, E.L. & Jukes, T.H. Sulfonamides and folic acid antagonists: a historical review. J. Nutr. 117, 1335–1341 (1987).
Article CAS PubMed Google Scholar
- Green, J.M., Nichols, B.P. & Matthews, R.G. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds. Neidhardt, F.C. et al.) 665–673 (ASM Press, Washington, D.C., 1996).
- Walsh, C. Antibiotics: Actions, Origins, Resistance (ASM Press, Washington, D.C., 2003).
- Fischer, R.S., Berry, A., Gaines, C.G. & Jensen, R.A. Comparative action of glyphosate as a trigger of energy drain in eubacteria. J. Bacteriol. 168, 1147–1154 (1986).
Article CAS PubMed PubMed Central Google Scholar
- Stauffer, G.V. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds. Böck, A. et al.) (ASM Press, Washington, D.C., 2004).
- Morris, J.G. Utilization of L-threnonine by a pseudomonad: a catabolic role for L-threonine aldolase. Biochem. J. 115, 603–605 (1969).
Article CAS PubMed PubMed Central Google Scholar
- Morrison, J.F. & Walsh, C.T. The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. 61, 201–301 (1988).
CAS PubMed Google Scholar
- Copeland, R.A. Enzymes: a Practical Introduction to Structure, Mechanism, and Data Analysis (Wiley, New York, 2004).
- Cronan, J.E. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds. Böck, A. et al.) (ASM Press, Washington, D.C., 2008).
- Lin, S., Hanson, R.E. & Cronan, J.E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat. Chem. Biol. 6, 682–688 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Stoner, G.L. & Eisenberg, M.A. Biosynthesis of 7,8-diaminopelargonic acid from 7-keto-8-aminopelargonic acid and _S_-adenosyl-L-methionine. The kinetics of the reaction. J. Biol. Chem. 250, 4037–4043 (1975).
CAS PubMed Google Scholar
- Shapiro, S. Speculative strategies for new antibacterials: all roads should not lead to Rome. J. Antibiot. (Tokyo) 66, 371–386 (2013).
Article CAS Google Scholar
- Schneider, G. & Lindqvist, Y. Structural enzymology of biotin biosynthesis. FEBS Lett. 495, 7–11 (2001).
Article CAS PubMed Google Scholar
- Woong Park, S. et al. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog. 7, e1002264 (2011).
Article PubMed PubMed Central Google Scholar
- Lightcap, E.S. & Silverman, R. Slow-binding inhibition of γ-aminobutyric acid aminotransferase by hydrazine analogues. J. Med. Chem. 39, 686–694 (1996).
Article CAS PubMed Google Scholar
- Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 2001).
- Sneath, P.H.A. & Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification (W. H. Freeman, San Francisco, 1973).
- Romesburg, C. Cluster Analysis For Researchers (Lulu Press, Morrisville, N.C., 2004).
- Baba, T. & Mori, H. The construction of systematic in-frame, single-gene knockout mutant collection in Escherichia coli K-12. Methods Mol. Biol. 416, 171–181 (2008).
Article PubMed Google Scholar
- Walsh, C.T., Erion, M., Walts, A., Delany, J. & Berchtold, G. Chorismate aminations: partial purification of Escherichia coli PABA synthase and mechanistic comparison with anthranilate synthase. Biochemistry 26, 4734–4745 (1987).
Article CAS PubMed Google Scholar
- Genghof, D.S., Partridge, C.W. & Carpenter, F.H. An agar plate assay for biotin. Arch. Biochem. 17, 413–420 (1948).
CAS PubMed Google Scholar
- Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Article CAS PubMed Google Scholar