Networking by small-molecule hormones in plant immunity (original) (raw)
Buchanan, B.B., Gruissem, W. & Jones, R.L. Biochemistry & Molecular Biology of Plants 1367 (American Society of Plant Physiologists, Rockville, Maryland, USA, 2000). Google Scholar
Pozo, M.J., Van Loon, L.C. & Pieterse, C.M.J. Jasmonates—signals in plant-microbe interactions. J. Plant Growth Regul.23, 211–222 (2004). CAS Google Scholar
Van Loon, L.C., Geraats, B.P.J. & Linthorst, H.J.M. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci.11, 184–191 (2006). ArticleCASPubMed Google Scholar
Loake, G. & Grant, M. Salicylic acid in plant defence—the players and protagonists. Curr. Opin. Plant Biol.10, 466–472 (2007). ArticleCASPubMed Google Scholar
Howe, G.A. Jasmonates as signals in the wound response. J. Plant Growth Regul.23, 223–237 (2004). ArticleCAS Google Scholar
Von Dahl, C.C. & Baldwin, I.T. Deciphering the role of ethylene in plant-herbivore interactions. J. Plant Growth Regul.26, 201–209 (2007). ArticleCAS Google Scholar
Asselbergh, B., De Vleesschauwer, D. & Höfte, M. Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol. Plant Microbe Interact.21, 709–719 (2008). ArticleCASPubMed Google Scholar
Mauch-Mani, B. & Mauch, F. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol.8, 409–414 (2005). ArticleCASPubMed Google Scholar
Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science312, 436–439 (2006). ArticleCASPubMed Google Scholar
Wang, D., Pajerowska-Mukhtar, K., Hendrickson Culler, A. & Dong, X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol.17, 1784–1790 (2007). ArticleCASPubMed Google Scholar
Navarro, L. et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol.18, 650–655 (2008). ArticleCASPubMed Google Scholar
Walters, D.R. & McRoberts, N. Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci.11, 581–586 (2006). ArticleCASPubMed Google Scholar
Siemens, J. et al. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol. Plant Microbe Interact.19, 480–494 (2006). ArticleCASPubMed Google Scholar
Nakashita, H. et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J.33, 887–898 (2003). ArticleCASPubMed Google Scholar
Shan, L.B. et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe4, 17–27 (2008). ArticleCASPubMedPubMed Central Google Scholar
Walters, D. & Heil, M. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol.71, 3–17 (2007). ArticleCAS Google Scholar
De Vos, M. et al. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant Microbe Interact.18, 923–937 (2005). ArticleCASPubMed Google Scholar
Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol.43, 205–227 (2005). ArticleCASPubMed Google Scholar
Göhre, V. & Robatzek, S. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol.46, 189–215 (2008). ArticlePubMedCAS Google Scholar
Nürnberger, T. & Kemmerling, B. Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. Annu. Plant Rev.34, 16–47 (2009). Google Scholar
Chisholm, S.T., Coaker, G., Day, B. & Staskawicz, B.J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell124, 803–814 (2006). ArticleCASPubMed Google Scholar
Schwessinger, B. & Zipfel, C. News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol.11, 389–395 (2008). ArticleCASPubMed Google Scholar
Tsuda, K., Sato, M., Glazebrook, J., Cohen, J.D. & Katagiri, F. Interplay between MAMP-triggered and SA-mediated defense responses. Plant J.53, 763–775 (2008). ArticleCASPubMed Google Scholar
De Wit, P.J.G.M. Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci.2, 452–458 (1997). Article Google Scholar
Thomma, B.P.H.J., Penninckx, I.A.M.A., Broekaert, W.F. & Cammue, B.P.A. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol.13, 63–68 (2001). ArticleCASPubMed Google Scholar
Van Loon, L.C., Rep, M. & Pieterse, C.M.J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol.44, 135–162 (2006). ArticleCASPubMed Google Scholar
Mishina, T.E. & Zeier, J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J.50, 500–513 (2007). ArticleCASPubMed Google Scholar
Vlot, A.C., Klessig, D.F. & Park, S.-W. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol.11, 436–442 (2008). ArticleCASPubMed Google Scholar
Van Loon, L.C., Bakker, P.A.H.M. & Pieterse, C.M.J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol.36, 453–483 (1998). ArticleCASPubMed Google Scholar
Pozo, M.J. & Azcon-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol.10, 393–398 (2007). ArticleCASPubMed Google Scholar
Van Wees, S.C.M., Van der Ent, S. & Pieterse, C.M.J. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol.11, 443–448 (2008). ArticleCASPubMed Google Scholar
Bakker, P.A.H.M., Pieterse, C.M.J. & Van Loon, L.C. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology97, 239–243 (2007). ArticlePubMed Google Scholar
Van der Ent, S. et al. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol.146, 1293–1304 (2008). ArticleCASPubMedPubMed Central Google Scholar
Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact.19, 1062–1071 (2006). ArticleCASPubMed Google Scholar
Pozo, M.J., Van der Ent, S., Van Loon, L.C. & Pieterse, C.M.J. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol.180, 511–523 (2008). ArticleCASPubMed Google Scholar
Ton, J., Van Pelt, J.A., Van Loon, L.C. & Pieterse, C.M.J. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact.15, 27–34 (2002). ArticleCASPubMed Google Scholar
Van Oosten, V.R. et al. Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol. Plant Microbe Interact.21, 919–930 (2008). ArticleCASPubMed Google Scholar
Stout, M.J., Thaler, J.S. & Thomma, B.P.H.J. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol.51, 663–689 (2006). ArticleCASPubMed Google Scholar
Poelman, E.H., van Loon, J.J.A. & Dicke, M. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci.13, 534–541 (2008). ArticleCASPubMed Google Scholar
Van der Putten, W.H., Vet, L.E.M., Harvey, J.A. & Wäckers, F.L. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol.16, 547–554 (2001). Article Google Scholar
Reymond, P. & Farmer, E.E. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol.1, 404–411 (1998). ArticleCASPubMed Google Scholar
Pieterse, C.M.J. & Dicke, M. Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci.12, 564–569 (2007). ArticleCASPubMed Google Scholar
Kunkel, B.N. & Brooks, D.M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol.5, 325–331 (2002). ArticleCASPubMed Google Scholar
Bostock, R.M. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol.43, 545–580 (2005). ArticleCASPubMed Google Scholar
Katsir, L., Chung, H.S., Koo, A.J.K. & Howe, G.A. Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol.11, 428–435 (2008). ArticleCASPubMedPubMed Central Google Scholar
Doherty, H.M., Selvendran, R.R. & Bowles, D.J. The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol. Mol. Plant Pathol.33, 377–384 (1988). ArticleCAS Google Scholar
Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A., Métraux, J.-P. & Broekaert, W.F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell10, 2103–2113 (1998). ArticleCASPubMedPubMed Central Google Scholar
Katagiri, F. A global view of defense gene expression regulation—a highly interconnected signaling network. Curr. Opin. Plant Biol.7, 506–511 (2004). ArticleCASPubMed Google Scholar
Glazebrook, J. et al. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J.34, 217–228 (2003). ArticleCASPubMed Google Scholar
Koornneef, A. et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol.147, 1358–1368 (2008). ArticleCASPubMedPubMed Central Google Scholar
Spoel, S.H., Johnson, J.S. & Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA104, 18842–18847 (2007). ArticleCASPubMedPubMed Central Google Scholar
Spoel, S.H. et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell15, 760–770 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schenk, P.M. et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA97, 11655–11660 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O. & Wasternack, C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol.140, 249–262 (2006). ArticleCASPubMedPubMed Central Google Scholar
Van Wees, S.C.M., De Swart, E.A.M., Van Pelt, J.A., Van Loon, L.C. & Pieterse, C.M.J. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA97, 8711–8716 (2000). ArticleCASPubMedPubMed Central Google Scholar
Spoel, S.H. & Dong, X. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe3, 348–351 (2008). ArticleCASPubMed Google Scholar
Lorenzo, O. & Solano, R. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol.8, 532–540 (2005). ArticleCASPubMed Google Scholar
López, M.A., Bannenberg, G. & Castresana, C. Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr. Opin. Plant Biol.11, 420–427 (2008). ArticlePubMedCAS Google Scholar
Robert-Seilaniantz, A., Navarro, L., Bari, R. & Jones, J.D.G. Pathological hormone imbalances. Curr. Opin. Plant Biol.10, 372–379 (2007). ArticleCASPubMed Google Scholar
Petersen, M. et al. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell103, 1111–1120 (2000). ArticleCASPubMed Google Scholar
Brodersen, P. et al. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J.47, 532–546 (2006). ArticleCASPubMed Google Scholar
Kachroo, P., Shanklin, J., Shah, J., Whittle, E.J. & Klessig, D.F. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. USA98, 9448–9453 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ndamukong, I. et al. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J.50, 128–139 (2007). ArticleCASPubMed Google Scholar
Li, J., Brader, G. & Palva, E.T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell16, 319–331 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kachroo, P., Kachroo, A., Lapchyk, L., Hildebrand, D. & Klessig, D.F. Restoration of defective cross talk in ssi2 mutants: Role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. Mol. Plant Microbe Interact.16, 1022–1029 (2003). ArticleCASPubMed Google Scholar
Mou, Z., Fan, W.H. & Dong, X.N. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell113, 935–944 (2003). ArticleCASPubMed Google Scholar
Pieterse, C.M.J. & Van Loon, L.C. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol.7, 456–464 (2004). ArticleCASPubMed Google Scholar
Yuan, Y. et al. Functional analysis of rice _NPR1_-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J.5, 313–324 (2007). ArticleCASPubMed Google Scholar
Leon-Reyes, A. et al. Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol.149, 1797–1809 (2009). ArticleCASPubMedPubMed Central Google Scholar
Johansson, A., Staal, J. & Dixelius, C. Early responses in the _Arabidopsis_-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. Mol. Plant Microbe Interact.19, 958–969 (2006). ArticleCASPubMed Google Scholar
Pré, M. et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol.147, 1347–1357 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Lorenzo, O., Piqueras, R., Sánchez-Serrano, J.J. & Solano, R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell15, 165–178 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell16, 1938–1950 (2004). ArticleCASPubMedPubMed Central Google Scholar
Anderson, J.P. et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell16, 3460–3479 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nickstadt, A. et al. The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Mol. Plant Pathol.5, 425–434 (2004). ArticleCASPubMed Google Scholar
Truman, W., Bennett, M.H., Kubigsteltig, I., Turnbull, C. & Grant, M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. USA104, 1075–1080 (2007). ArticleCASPubMedPubMed Central Google Scholar
Laurie-Berry, N., Joardar, V., Street, I.H. & Kunkel, B.N. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol. Plant Microbe Interact.19, 789–800 (2006). ArticleCASPubMed Google Scholar
Verberne, M.C., Hoekstra, J., Bol, J.F. & Linthorst, H.J.M. Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J.35, 27–32 (2003). ArticleCASPubMed Google Scholar
Lawton, K.A., Potter, S.L., Uknes, S. & Ryals, J. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell6, 581–588 (1994). ArticleCASPubMedPubMed Central Google Scholar
Adie, B.A.T. et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell19, 1665–1681 (2007). ArticleCASPubMedPubMed Central Google Scholar
Flors, V. et al. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J.54, 81–92 (2008). ArticleCASPubMed Google Scholar
Yasuda, M. et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell20, 1678–1692 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mohr, P.G. & Cahill, D.M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct. Integr. Genomics7, 181–191 (2007). ArticleCASPubMed Google Scholar
Nagpal, P. et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development132, 4107–4118 (2005). ArticleCASPubMed Google Scholar
Liu, J. & Wang, X.-J. An integrative analysis of the effects of auxin on jasmonic acid biosynthesis in Arabidopsis thaliana. J. Integr. Plant Biol.48, 99–103 (2006). ArticleCAS Google Scholar
Chen, Z.Y. et al. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc. Natl. Acad. Sci. USA104, 20131–20136 (2007). ArticleCASPubMedPubMed Central Google Scholar
Belkhadir, Y. & Chory, J. Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. Science314, 1410–1411 (2006). ArticleCASPubMed Google Scholar
Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature448, 497–500 (2007). ArticleCASPubMed Google Scholar
Heese, A. et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA104, 12217–12222 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kemmerling, B. et al. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr. Biol.17, 1116–1122 (2007). ArticleCASPubMed Google Scholar
Tzfira, T. & Citovsky, V. _Agrobacterium_-mediated genetic transformation of plants: biology and biotechnology. Curr. Opin. Biotechnol.17, 147–154 (2006). ArticleCASPubMed Google Scholar
Cristescu, S.M., De Martinis, D., Hekkert, S.T., Parker, D.H. & Harren, F.J.M. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl. Environ. Microbiol.68, 5342–5350 (2002). ArticleCASPubMedPubMed Central Google Scholar
Spaepen, S., Vanderleyden, J. & Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev.31, 425–448 (2007). ArticleCASPubMed Google Scholar
Nomura, K., Melotto, M. & He, S.-Y. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr. Opin. Plant Biol.8, 361–368 (2005). ArticleCASPubMed Google Scholar
de Torres-Zabala, M. et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J.26, 1434–1443 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jelenska, J. et al. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr. Biol.17, 499–508 (2007). ArticleCASPubMedPubMed Central Google Scholar
Brooks, D.M., Bender, C.L. & Kunkel, B.N. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol. Plant Pathol.6, 629–639 (2005). ArticleCASPubMed Google Scholar
Uppalapati, S.R. et al. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact.20, 955–965 (2007). ArticleCASPubMed Google Scholar
Traw, M.B., Kim, J., Enright, S., Cipollini, D.F. & Bergelson, J. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Mol. Ecol.12, 1125–1135 (2003). ArticleCASPubMed Google Scholar
Scheres, B. & Lipka, V. Plant cell biology—get your networks together. Curr. Opin. Plant Biol.10, 546–548 (2007). ArticlePubMed Google Scholar
Long, T.A., Rady, S.M. & Benfey, P.N. Systems approaches to identifying gene regulatory networks in plants. Annu. Rev. Cell Dev. Biol.24, 81–103 (2008). ArticleCASPubMedPubMed Central Google Scholar