A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis (original) (raw)

References

  1. Terstappen, G.C., Schlupen, C., Raggiaschi, R. & Gaviraghi, G. Target deconvolution strategies in drug discovery. Nat. Rev. Drug Discov. 6, 891–903 (2007).
    Article CAS Google Scholar
  2. Chan, J.N., Nislow, C. & Emili, A. Recent advances and method development for drug target identification. Trends Pharmacol. Sci. 31, 82–88 (2010).
    Article CAS Google Scholar
  3. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).
    Article CAS Google Scholar
  4. Licitra, E.J. & Liu, J.O. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc. Natl. Acad. Sci. USA 93, 12817–12821 (1996).
    Article CAS Google Scholar
  5. Becker, F. et al. A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem. Biol. 11, 211–223 (2004).
    Article CAS Google Scholar
  6. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).
    Article CAS Google Scholar
  7. Kolaczkowski, M., Kolaczowska, A., Luczynski, J., Witek, S. & Goffeau, A. In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb. Drug Resist. 4, 143–158 (1998).
    Article CAS Google Scholar
  8. McMurray, M.A. & Thorner, J. Septin stability and recycling during dynamic structural transitions in cell division and development. Curr. Biol. 18, 1203–1208 (2008).
    Article CAS Google Scholar
  9. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. & Kraut, J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J. Biol. Chem. 257, 13650–13662 (1982).
    CAS PubMed Google Scholar
  10. Gendreizig, S., Kindermann, M. & Johnsson, K. Induced protein dimerization in vivo through covalent labeling. J. Am. Chem. Soc. 125, 14970–14971 (2003).
    Article CAS Google Scholar
  11. Mayer, R.J., Chen, J.T., Taira, K., Fierke, C.A. & Benkovic, S.J. Importance of a hydrophobic residue in binding and catalysis by dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 83, 7718–7720 (1986).
    Article CAS Google Scholar
  12. Murphy, D.J. & Benkovic, S.J. Hydrophobic interactions via mutants of Escherichia coli dihydrofolate reductase: separation of binding and catalysis. Biochemistry 28, 3025–3031 (1989).
    Article CAS Google Scholar
  13. Koegl, M. & Uetz, P. Improving yeast two-hybrid screening systems. Brief. Funct. Genomics Proteomics 6, 302–312 (2008).
    Article Google Scholar
  14. Vidalain, P.O., Boxem, M., Ge, H., Li, S. & Vidal, M. Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32, 363–370 (2004).
    Article CAS Google Scholar
  15. Fromont-Racine, M., Rain, J.C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat. Genet. 16, 277–282 (1997).
    Article CAS Google Scholar
  16. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).
    Article CAS Google Scholar
  17. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).
    Article CAS Google Scholar
  18. Rix, U. et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110, 4055–4063 (2007).
    Article CAS Google Scholar
  19. Stamos, J., Sliwkowski, M.X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).
    Article CAS Google Scholar
  20. Fairn, G.D. & McMaster, C.R. Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cell. Mol. Life Sci. 65, 228–236 (2008).
    Article CAS Google Scholar
  21. Istvan, E.S. & Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001).
    Article CAS Google Scholar
  22. Lockhart, D.J. et al. Pyrrole compounds and uses thereof. Vol. US 7.323.490 B2 (Ambit BioSciences Corporation, 2008).
  23. Wilson, S.J. & Smyth, E.M. Internalization and recycling of the human prostacyclin receptor is modulated through its isoprenylation-dependent interaction with the delta subunit of cGMP phosphodiesterase 6. J. Biol. Chem. 281, 11780–11786 (2006).
    Article CAS Google Scholar
  24. Cordle, A., Koenigsknecht-Talboo, J., Wilkinson, B., Limpert, A. & Landreth, G. Mechanisms of statin-mediated inhibition of small G-protein function. J. Biol. Chem. 280, 34202–34209 (2005).
    Article CAS Google Scholar
  25. Winger, J.A., Hantschel, O., Superti-Furga, G. & Kuriyan, J. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Struct. Biol. 9, 7 (2009).
    Article Google Scholar
  26. Caprilli, R., Cesarini, M., Angelucci, E. & Frieri, G. The long journey of salicylates in ulcerative colitis: the past and the future. J. Crohn's Colitis 3, 149–156 (2009).
    Article Google Scholar
  27. Rousseaux, C. et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J. Exp. Med. 201, 1205–1215 (2005).
    Article CAS Google Scholar
  28. Sutherland, L. & Macdonald, J.K. Oral 5-aminosalicylic acid for maintenance of remission in ulcerative colitis. Cochrane Database Syst. Rev. CD000544 (2006).
  29. Baggott, J.E., Morgan, S.L., Ha, T., Vaughn, W.H. & Hine, R.J. Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem. J. 282, 197–202 (1992).
    Article CAS Google Scholar
  30. Wahl, C., Liptay, S., Adler, G. & Schmid, R.M. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J. Clin. Invest. 101, 1163–1174 (1998).
    Article CAS Google Scholar
  31. Thöny, B., Auerbach, G. & Blau, N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 347, 1–16 (2000).
    Article Google Scholar
  32. Smith, G.K., Duch, D.S., Edelstein, M.P. & Bigham, E.C. New inhibitors of sepiapterin reductase. Lack of an effect of intracellular tetrahydrobiopterin depletion upon in vitro proliferation of two human cell lines. J. Biol. Chem. 267, 5599–5607 (1992).
    CAS PubMed Google Scholar
  33. Dahan, A. & Amidon, G.L. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting. Int. J. Pharm. 386, 216–220 (2010).
    Article CAS Google Scholar
  34. Gross, S.S. & Levi, R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J. Biol. Chem. 267, 25722–25729 (1992).
    CAS PubMed Google Scholar
  35. Bune, A.J. et al. Inhibition of tetrahydrobiopterin synthesis reduces in vivo nitric oxide production in experimental endotoxic shock. Biochem. Biophys. Res. Commun. 220, 13–19 (1996).
    Article CAS Google Scholar
  36. Farrell, A.J., Blake, D.R., Palmer, R.M. & Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51, 1219–1222 (1992).
    Article CAS Google Scholar
  37. Singer, I.I. et al. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111, 871–885 (1996).
    Article CAS Google Scholar
  38. Connor, J.R. et al. Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxide synthase. Eur. J. Pharmacol. 273, 15–24 (1995).
    Article CAS Google Scholar
  39. Kankuri, E. et al. Suppression of acute experimental colitis by a highly selective inducible nitric-oxide synthase inhibitor, N-[3-(aminomethyl)benzyl]acetamidine. J. Pharmacol. Exp. Ther. 298, 1128–1132 (2001).
    CAS PubMed Google Scholar
  40. Farr, M., Brodrick, A. & Bacon, P.A. Plasma and synovial fluid concentrations of sulphasalazine and two of its metabolites in rheumatoid arthritis. Rheumatol. Int. 5, 247–251 (1985).
    Article CAS Google Scholar
  41. Pullar, T., Hunter, J.A. & Capell, H.A. Which component of sulphasalazine is active in rheumatoid arthritis? Br. Med. J. (Clin. Res. Ed.) 290, 1535–1538 (1985).
    Article CAS Google Scholar
  42. Lauritsen, K., Hansen, J., Ryde, M. & Rask-Madsen, J. Colonic azodisalicylate metabolism determined by in vivo dialysis in healthy volunteers and patients with ulcerative colitis. Gastroenterology 86, 1496–1500 (1984).
    CAS PubMed Google Scholar
  43. Klotz, U. Colonic targeting of aminosalicylates for the treatment of ulcerative colitis. Dig. Liver Dis. 37, 381–388 (2005).
    Article CAS Google Scholar
  44. Temperini, C., Cecchi, A., Scozzafava, A. & Supuran, C.T. Carbonic anhydrase inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide, and furosemide X-ray crystal structures in adducts with isozyme II, when several water molecules make the difference. Bioorg. Med. Chem. 17, 1214–1221 (2009).
    Article CAS Google Scholar
  45. Gierse, J.K., Koboldt, C.M., Walker, M.C., Seibert, K. & Isakson, P.C. Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem. J. 339, 607–614 (1999).
    Article CAS Google Scholar
  46. Hori, T. et al. Crystal structure of anti-configuration of indomethacin and leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase complex reveals the structural basis of broad spectrum indomethacin efficacy. J. Biochem. 140, 457–466 (2006).
    Article CAS Google Scholar
  47. Tegeder, I. et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12, 1269–1277 (2006).
    Article CAS Google Scholar
  48. Lötsch, J., Klepstad, P., Doehring, A. & Dale, O.A. GTP cyclohydrolase 1 genetic variant delays cancer pain. Pain 148, 103–106 (2010).
    Article Google Scholar
  49. Berti-Mattera, L.N., Kern, T.S., Siegel, R.E., Nemet, I. & Mitchell, R. Sulfasalazine blocks the development of tactile allodynia in diabetic rats. Diabetes 57, 2801–2808 (2008).
    Article CAS Google Scholar
  50. Blau, N., Bonafe, L. & Thony, B. Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol. Genet. Metab. 74, 172–185 (2001).
    Article CAS Google Scholar

Download references