Small-molecule displacement of a cryptic degron causes conditional protein degradation (original) (raw)

References

  1. Furth, P.A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306 (1994).
    Article CAS Google Scholar
  2. Ryding, A.D.S., Sharp, M.G.F. & Mullins, J.J. Conditional transgenic technologies. J. Endocrinol. 171, 1–14 (2001).
    Article CAS Google Scholar
  3. Banaszynski, L.A. & Wandless, T.J. Conditional control of protein function. Chem. Biol. 13, 11–21 (2006).
    Article CAS Google Scholar
  4. Raina, K. & Crews, C.M. Chemical inducers of targeted protein degradation. J. Biol. Chem. 285, 11057–11060 (2010).
    Article CAS Google Scholar
  5. Zhou, P., Bogacki, R., McReynolds, L. & Howley, P.M. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell 6, 751–756 (2000).
    Article CAS Google Scholar
  6. Gosink, M.M. & Vierstra, R.D. Redirecting the specificity of ubiquitination by modifying ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. USA 92, 9117–9121 (1995).
    Article CAS Google Scholar
  7. Matsuzawa, S., Cuddy, M., Fukushima, T. & Reed, J.C. Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway. Proc. Natl. Acad. Sci. USA 102, 14982–14987 (2005).
    Article CAS Google Scholar
  8. Sakamoto, K.M. et al. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 98, 8554–8559 (2001).
    Article CAS Google Scholar
  9. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).
    Article CAS Google Scholar
  10. Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G.L. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).
    Article CAS Google Scholar
  11. Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D. & Wandless, T.J. A general chemical method to regulate protein instability in the mammalian central nervous system. Chem. Biol. 17, 981–988 (2010).
    Article CAS Google Scholar
  12. Harding, M.W., Galat, A., Uehling, D.E. & Schreiber, S.L. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341, 758–760 (1989).
    Article CAS Google Scholar
  13. Gilon, T., Chomsky, O. & Kulka, R.G. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J. 17, 2759–2766 (1998).
    Article CAS Google Scholar
  14. Glotzer, M., Murray, A.W. & Kirschner, M.W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).
    Article CAS Google Scholar
  15. Lawson, T.G. et al. Identification and characterization of a protein destruction signal in the encephalomyocarditis virus 3C protease. J. Biol. Chem. 274, 9871–9880 (1999).
    Article CAS Google Scholar
  16. Albers, M.W., Walsh, C.T. & Schreiber, S.L. Substrate specificity for the human rotamase FKBP: a view of FK506 and rapamycin as leucine-(twisted amide)-proline mimics. J. Org. Chem. 55, 4984–4986 (1990).
    Article CAS Google Scholar
  17. Cameron, A.M. et al. FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J. Biol. Chem. 272, 27582–27588 (1997).
    Article CAS Google Scholar
  18. Yang, W. et al. Investigating protein-ligand interactions with a mutant FKBP possessing a designed specificity pocket. J. Med. Chem. 43, 1135–1142 (2000).
    Article CAS Google Scholar
  19. Grimley, J.S., Chen, D.A., Banaszynski, L.A. & Wandless, T.J. Synthesis and analysis of stabilizing ligands for FKBP-derived destabilizing domains. Bioorg. Med. Chem. Lett. 18, 759–761 (2008).
    Article CAS Google Scholar
  20. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
    Article CAS Google Scholar
  21. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).
    Article CAS Google Scholar
  22. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
    Article CAS Google Scholar
  23. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).
    Article CAS Google Scholar
  24. Yoshimizu, T. et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41, 675–684 (1999).
    Article CAS Google Scholar
  25. Theriot, J.A. & Mitchison, T.J. Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991).
    Article CAS Google Scholar
  26. Clackson, T. et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl. Acad. Sci. USA 95, 10437–10442 (1998).
    Article CAS Google Scholar
  27. Holt, D.A. et al. Design, synthesis, and kinetic evaluation of high-affinity FKBP ligands and the X-ray crystal structures of their complexes with FKBP12. J. Am. Chem. Soc. 115, 9925–9938 (1993).
    Article CAS Google Scholar
  28. Delaglio, F. et al. NMRPipe—a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
    Article CAS Google Scholar
  29. Garrett, D.S., Seok, Y.J., Peterofsky, A., Clore, G.M. & Gronenborn, A.M. Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry 36, 4393–4398 (1997).
    Article CAS Google Scholar

Download references