Small-molecule displacement of a cryptic degron causes conditional protein degradation (original) (raw)
References
Furth, P.A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA91, 9302–9306 (1994). ArticleCAS Google Scholar
Ryding, A.D.S., Sharp, M.G.F. & Mullins, J.J. Conditional transgenic technologies. J. Endocrinol.171, 1–14 (2001). ArticleCAS Google Scholar
Banaszynski, L.A. & Wandless, T.J. Conditional control of protein function. Chem. Biol.13, 11–21 (2006). ArticleCAS Google Scholar
Raina, K. & Crews, C.M. Chemical inducers of targeted protein degradation. J. Biol. Chem.285, 11057–11060 (2010). ArticleCAS Google Scholar
Zhou, P., Bogacki, R., McReynolds, L. & Howley, P.M. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell6, 751–756 (2000). ArticleCAS Google Scholar
Gosink, M.M. & Vierstra, R.D. Redirecting the specificity of ubiquitination by modifying ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. USA92, 9117–9121 (1995). ArticleCAS Google Scholar
Matsuzawa, S., Cuddy, M., Fukushima, T. & Reed, J.C. Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway. Proc. Natl. Acad. Sci. USA102, 14982–14987 (2005). ArticleCAS Google Scholar
Sakamoto, K.M. et al. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA98, 8554–8559 (2001). ArticleCAS Google Scholar
Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods6, 917–922 (2009). ArticleCAS Google Scholar
Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G.L. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell126, 995–1004 (2006). ArticleCAS Google Scholar
Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D. & Wandless, T.J. A general chemical method to regulate protein instability in the mammalian central nervous system. Chem. Biol.17, 981–988 (2010). ArticleCAS Google Scholar
Harding, M.W., Galat, A., Uehling, D.E. & Schreiber, S.L. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature341, 758–760 (1989). ArticleCAS Google Scholar
Gilon, T., Chomsky, O. & Kulka, R.G. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J.17, 2759–2766 (1998). ArticleCAS Google Scholar
Glotzer, M., Murray, A.W. & Kirschner, M.W. Cyclin is degraded by the ubiquitin pathway. Nature349, 132–138 (1991). ArticleCAS Google Scholar
Lawson, T.G. et al. Identification and characterization of a protein destruction signal in the encephalomyocarditis virus 3C protease. J. Biol. Chem.274, 9871–9880 (1999). ArticleCAS Google Scholar
Albers, M.W., Walsh, C.T. & Schreiber, S.L. Substrate specificity for the human rotamase FKBP: a view of FK506 and rapamycin as leucine-(twisted amide)-proline mimics. J. Org. Chem.55, 4984–4986 (1990). ArticleCAS Google Scholar
Cameron, A.M. et al. FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J. Biol. Chem.272, 27582–27588 (1997). ArticleCAS Google Scholar
Yang, W. et al. Investigating protein-ligand interactions with a mutant FKBP possessing a designed specificity pocket. J. Med. Chem.43, 1135–1142 (2000). ArticleCAS Google Scholar
Grimley, J.S., Chen, D.A., Banaszynski, L.A. & Wandless, T.J. Synthesis and analysis of stabilizing ligands for FKBP-derived destabilizing domains. Bioorg. Med. Chem. Lett.18, 759–761 (2008). ArticleCAS Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCAS Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCAS Google Scholar
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007). ArticleCAS Google Scholar
Yoshimizu, T. et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ.41, 675–684 (1999). ArticleCAS Google Scholar
Theriot, J.A. & Mitchison, T.J. Actin microfilament dynamics in locomoting cells. Nature352, 126–131 (1991). ArticleCAS Google Scholar
Clackson, T. et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl. Acad. Sci. USA95, 10437–10442 (1998). ArticleCAS Google Scholar
Holt, D.A. et al. Design, synthesis, and kinetic evaluation of high-affinity FKBP ligands and the X-ray crystal structures of their complexes with FKBP12. J. Am. Chem. Soc.115, 9925–9938 (1993). ArticleCAS Google Scholar
Delaglio, F. et al. NMRPipe—a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR6, 277–293 (1995). ArticleCAS Google Scholar
Garrett, D.S., Seok, Y.J., Peterofsky, A., Clore, G.M. & Gronenborn, A.M. Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry36, 4393–4398 (1997). ArticleCAS Google Scholar