The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A (original) (raw)

References

  1. Hallen, H.E., Luo, H., Scott-Craig, J.S. & Walton, J.D. Gene family encoding the major toxins of lethal Amanita mushrooms. Proc. Natl. Acad. Sci. USA 104, 19097–19101 (2007).
    Article CAS PubMed Google Scholar
  2. Cascales, L. & Craik, D.J. Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org. Biomol. Chem. 8, 5035–5047 (2010).
    Article CAS PubMed Google Scholar
  3. Maqueda, M. et al. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol. Rev. 32, 2–22 (2008).
    Article CAS PubMed Google Scholar
  4. Babasaki, K., Takao, T., Shimonishi, Y. & Kurahashi, K. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J. Biochem. 98, 585–603 (1985).
    Article CAS PubMed Google Scholar
  5. Shelburne, C.E. et al. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother. 59, 297–300 (2007).
    Article CAS PubMed Google Scholar
  6. Sutyak, K.E. et al. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect. Dis. Obstet. Gynecol. 2008, 540758 (2008).
    Article PubMed Google Scholar
  7. Silkin, L., Hamza, S., Kaufman, S., Cobb, S.L. & Vederas, J.C. Spermicidal bacteriocins: lacticin 3147 and subtilosin A. Bioorg. Med. Chem. Lett. 18, 3103–3106 (2008).
    Article CAS PubMed Google Scholar
  8. Huang, T. et al. Isolation of a variant of subtilosin A with hemolytic activity. J. Bacteriol. 191, 5690–5696 (2009).
    Article CAS PubMed Google Scholar
  9. Kawulka, K. et al. Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to α-carbons of phenylalanine and threonine. J. Am. Chem. Soc. 125, 4726–4727 (2003).
    Article CAS PubMed Google Scholar
  10. Kawulka, K.E. et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry 43, 3385–3395 (2004).
    Article CAS PubMed Google Scholar
  11. Liu, W.-T. et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 107, 16286–16290 (2010).
    Article CAS PubMed Google Scholar
  12. Lee, H., Churey, J.J. & Worobo, R.W. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299, 205–213 (2009).
    Article CAS PubMed Google Scholar
  13. Sit, C.S., van Belkum, M.J., McKay, R.T., Worobo, R.W. & Vederas, J.C. The 3D solution structure of thurincin H, a cacteriocin with four sulfur to α-carbon crosslinks. Angew. Chem. Int. Edn Engl. 50, 8718–8721 (2011).
    Article CAS Google Scholar
  14. Rea, M.C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA 107, 9352–9357 (2010).
    Article CAS PubMed Google Scholar
  15. Sit, C.S., McKay, R.T., Hill, C., Ross, R.P. & Vederas, J.C. The 3D structure of thuricin CD, a two-component bacteriocin with cysteine sulfur to α-carbon cross-links. J. Am. Chem. Soc. 133, 7680–7683 (2011).
    Article CAS PubMed Google Scholar
  16. Zheng, G., Yan, L.Z., Vederas, J.C. & Zuber, P. Genes of the _sbo_-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181, 7346–7355 (1999).
    CAS PubMed Central PubMed Google Scholar
  17. Zheng, G., Hehn, R. & Zuber, P. Mutational analysis of the _sbo_-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J. Bacteriol. 182, 3266–3273 (2000).
    Article CAS PubMed Google Scholar
  18. Nakano, M.M., Zheng, G. & Zuber, P. Dual control of _sbo_-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol. 182, 3274–3277 (2000).
    Article CAS PubMed Google Scholar
  19. Albano, M. et al. The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J. Bacteriol. 187, 2010–2019 (2005).
    Article CAS PubMed Google Scholar
  20. González-Pastor, J.E., Hobbs, E.C. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510–513 (2003).
    Article PubMed Google Scholar
  21. Sofia, H.J., Chen, G., Hetzler, B., Reyes-Spindola, J. & Miller, N. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106 (2001).
    Article CAS PubMed Google Scholar
  22. Frey, P.A., Hegeman, A.D. & Ruzicka, F.J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).
    Article CAS PubMed Google Scholar
  23. Duschene, K.S., Veneziano, S.E., Silver, S.C. & Broderick, J.B. Control of radical chemistry in the AdoMet radical enzymes. Curr. Opin. Chem. Biol. 13, 74–83 (2009).
    Article CAS PubMed Google Scholar
  24. Chirpich, T.P., Zappia, V., Costilow, R.N. & Barker, H.A. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J. Biol. Chem. 245, 1778–1789 (1970).
    CAS PubMed Google Scholar
  25. Layer, G. et al. Structural and functional comparison of HemN to other radical SAM enzymes. Biol. Chem. 386, 971–980 (2005).
    Article CAS PubMed Google Scholar
  26. Guianvarc'h, D., Florentin, D., Tse Sum Bui, B., Nunzi, F. & Marquet, A. Biotin synthase, a new member of the family of enzymes which uses S-adenosylmethionine as a source of deoxyadenosyl radical. Biochem. Biophys. Res. Commun. 236, 402–406 (1997).
    Article CAS PubMed Google Scholar
  27. Ugulava, N.B., Gibney, B.R. & Jarrett, J.T. Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. Biochemistry 40, 8343–8351 (2001).
    Article CAS PubMed Google Scholar
  28. Berkovitch, F. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76–79 (2004).
    Article CAS PubMed Google Scholar
  29. Miller, J.R. et al. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry 39, 15166–15178 (2000).
    Article CAS PubMed Google Scholar
  30. Cicchillo, R.M. et al. Lipoyl synthase requires two equivalents of _S_-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry 43, 6378–6386 (2004).
    Article CAS PubMed Google Scholar
  31. Santamaria-Araujo, J.A. et al. The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J. Biol. Chem. 279, 15994–15999 (2004).
    Article CAS PubMed Google Scholar
  32. Hänzelmann, P. & Schindelin, H. Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. Proc. Natl. Acad. Sci. USA 103, 6829–6834 (2006).
    Article PubMed Google Scholar
  33. Pierrel, F., Douki, T., Fontecave, M. & Atta, M. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem. 279, 47555–47563 (2004).
    Article CAS PubMed Google Scholar
  34. Hernández, H.L. et al. MiaB, a bifunctional radical-_S_-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry 46, 5140–5147 (2007).
    Article PubMed Google Scholar
  35. Lee, K.-H. et al. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry 48, 10162–10174 (2009).
    Article CAS PubMed Google Scholar
  36. Yokoyama, K., Numakura, M., Kudo, F., Ohmori, D. & Eguchi, T. Characterization and mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin. J. Am. Chem. Soc. 129, 15147–15155 (2007).
    Article CAS PubMed Google Scholar
  37. Grove, T.L., Ahlum, J.H., Sharma, P., Krebs, C. & Booker, S.J. A consensus mechanism for radical SAM-dependent dehydrogenation? BtrN contains two [4Fe-4S] clusters. Biochemistry 49, 3783–3785 (2010).
    Article CAS PubMed Google Scholar
  38. Fang, Q., Peng, J. & Dierks, T. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB. J. Biol. Chem. 279, 14570–14578 (2004).
    Article CAS PubMed Google Scholar
  39. Grove, T.L., Lee, K.-H., St. Clair, J., Krebs, C. & Booker, S.J. In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 47, 7523–7538 (2008).
    Article CAS PubMed Google Scholar
  40. Hagen, K. & Watson, A. Synthetic routes to iron sulfide (Fe2S2, Fe3S4, Fe4S4, and Fe6S9), clusters from the common precursor tetrakis(ethanethiolate)ferrate2– ion ([Fe(SC2H5)4]2–): structures and properties of [Fe3S4(SR)4]3– and bis(ethanethiolate)nonathioxohexaferrate4– ion ([Fe6S9(SC2H5)2]4–), examples of the newest types of Fe-S-SR clusters. J. Am. Chem. Soc. 105, 3905–3913 (1983).
    Article CAS Google Scholar
  41. Külzer, R., Pils, T., Kappl, R., Hüttermann, J. & Knappe, J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J. Biol. Chem. 273, 4897–4903 (1998).
    Article PubMed Google Scholar
  42. Ugulava, N.B., Gibney, B.R. & Jarrett, J.T. Iron-sulfur cluster interconversions in biotin synthase: dissociation and reassociation of iron during conversion of [2Fe-2S] to [4Fe-4S] clusters. Biochemistry 39, 5206–5214 (2000).
    Article CAS PubMed Google Scholar
  43. Duschene, K.S. & Broderick, J.B. The antiviral protein viperin is a radical SAM enzyme. FEBS Lett. 584, 1263–1267 (2010).
    Article CAS PubMed Google Scholar
  44. Chatterjee, A. et al. Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nat. Chem. Biol. 4, 758–765 (2008).
    Article CAS PubMed Google Scholar
  45. Murphy, K. et al. Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters. PLoS ONE 6, e20852 (2011).
    Article CAS PubMed Google Scholar
  46. Oman, T.J. & van der Donk, W.A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).
    Article CAS PubMed Google Scholar
  47. Xie, L., Miller, L., Chatterjee, C. & Averin, O. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303, 679–681 (2004).
    Article CAS PubMed Google Scholar
  48. Chatterjee, C., Paul, M., Xie, L. & van der Donk, W.A. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105, 633–684 (2005).
    Article CAS PubMed Google Scholar
  49. Roach, P.L., Clifton, I., Hensgens, C. & Shibata, N. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387, 827–830 (1997).
    Article CAS PubMed Google Scholar
  50. Layer, G., Verfürth, K., Mahlitz, E. & Jahn, D. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J. Biol. Chem. 277, 34136–34142 (2002).
    Article CAS PubMed Google Scholar

Download references