The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A (original) (raw)
References
Hallen, H.E., Luo, H., Scott-Craig, J.S. & Walton, J.D. Gene family encoding the major toxins of lethal Amanita mushrooms. Proc. Natl. Acad. Sci. USA104, 19097–19101 (2007). ArticleCASPubMed Google Scholar
Cascales, L. & Craik, D.J. Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org. Biomol. Chem.8, 5035–5047 (2010). ArticleCASPubMed Google Scholar
Maqueda, M. et al. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol. Rev.32, 2–22 (2008). ArticleCASPubMed Google Scholar
Babasaki, K., Takao, T., Shimonishi, Y. & Kurahashi, K. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J. Biochem.98, 585–603 (1985). ArticleCASPubMed Google Scholar
Shelburne, C.E. et al. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother.59, 297–300 (2007). ArticleCASPubMed Google Scholar
Sutyak, K.E. et al. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect. Dis. Obstet. Gynecol.2008, 540758 (2008). ArticlePubMed Google Scholar
Silkin, L., Hamza, S., Kaufman, S., Cobb, S.L. & Vederas, J.C. Spermicidal bacteriocins: lacticin 3147 and subtilosin A. Bioorg. Med. Chem. Lett.18, 3103–3106 (2008). ArticleCASPubMed Google Scholar
Huang, T. et al. Isolation of a variant of subtilosin A with hemolytic activity. J. Bacteriol.191, 5690–5696 (2009). ArticleCASPubMed Google Scholar
Kawulka, K. et al. Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to α-carbons of phenylalanine and threonine. J. Am. Chem. Soc.125, 4726–4727 (2003). ArticleCASPubMed Google Scholar
Kawulka, K.E. et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry43, 3385–3395 (2004). ArticleCASPubMed Google Scholar
Liu, W.-T. et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl. Acad. Sci. USA107, 16286–16290 (2010). ArticleCASPubMed Google Scholar
Lee, H., Churey, J.J. & Worobo, R.W. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett.299, 205–213 (2009). ArticleCASPubMed Google Scholar
Sit, C.S., van Belkum, M.J., McKay, R.T., Worobo, R.W. & Vederas, J.C. The 3D solution structure of thurincin H, a cacteriocin with four sulfur to α-carbon crosslinks. Angew. Chem. Int. Edn Engl.50, 8718–8721 (2011). ArticleCAS Google Scholar
Rea, M.C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA107, 9352–9357 (2010). ArticleCASPubMed Google Scholar
Sit, C.S., McKay, R.T., Hill, C., Ross, R.P. & Vederas, J.C. The 3D structure of thuricin CD, a two-component bacteriocin with cysteine sulfur to α-carbon cross-links. J. Am. Chem. Soc.133, 7680–7683 (2011). ArticleCASPubMed Google Scholar
Zheng, G., Yan, L.Z., Vederas, J.C. & Zuber, P. Genes of the _sbo_-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol.181, 7346–7355 (1999). CASPubMed CentralPubMed Google Scholar
Zheng, G., Hehn, R. & Zuber, P. Mutational analysis of the _sbo_-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J. Bacteriol.182, 3266–3273 (2000). ArticleCASPubMed Google Scholar
Nakano, M.M., Zheng, G. & Zuber, P. Dual control of _sbo_-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol.182, 3274–3277 (2000). ArticleCASPubMed Google Scholar
Albano, M. et al. The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J. Bacteriol.187, 2010–2019 (2005). ArticleCASPubMed Google Scholar
González-Pastor, J.E., Hobbs, E.C. & Losick, R. Cannibalism by sporulating bacteria. Science301, 510–513 (2003). ArticlePubMed Google Scholar
Sofia, H.J., Chen, G., Hetzler, B., Reyes-Spindola, J. & Miller, N. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res.29, 1097–1106 (2001). ArticleCASPubMed Google Scholar
Frey, P.A., Hegeman, A.D. & Ruzicka, F.J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol.43, 63–88 (2008). ArticleCASPubMed Google Scholar
Duschene, K.S., Veneziano, S.E., Silver, S.C. & Broderick, J.B. Control of radical chemistry in the AdoMet radical enzymes. Curr. Opin. Chem. Biol.13, 74–83 (2009). ArticleCASPubMed Google Scholar
Chirpich, T.P., Zappia, V., Costilow, R.N. & Barker, H.A. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J. Biol. Chem.245, 1778–1789 (1970). CASPubMed Google Scholar
Layer, G. et al. Structural and functional comparison of HemN to other radical SAM enzymes. Biol. Chem.386, 971–980 (2005). ArticleCASPubMed Google Scholar
Guianvarc'h, D., Florentin, D., Tse Sum Bui, B., Nunzi, F. & Marquet, A. Biotin synthase, a new member of the family of enzymes which uses S-adenosylmethionine as a source of deoxyadenosyl radical. Biochem. Biophys. Res. Commun.236, 402–406 (1997). ArticleCASPubMed Google Scholar
Ugulava, N.B., Gibney, B.R. & Jarrett, J.T. Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. Biochemistry40, 8343–8351 (2001). ArticleCASPubMed Google Scholar
Berkovitch, F. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science303, 76–79 (2004). ArticleCASPubMed Google Scholar
Miller, J.R. et al. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry39, 15166–15178 (2000). ArticleCASPubMed Google Scholar
Cicchillo, R.M. et al. Lipoyl synthase requires two equivalents of _S_-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry43, 6378–6386 (2004). ArticleCASPubMed Google Scholar
Santamaria-Araujo, J.A. et al. The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J. Biol. Chem.279, 15994–15999 (2004). ArticleCASPubMed Google Scholar
Hänzelmann, P. & Schindelin, H. Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. Proc. Natl. Acad. Sci. USA103, 6829–6834 (2006). ArticlePubMed Google Scholar
Pierrel, F., Douki, T., Fontecave, M. & Atta, M. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem.279, 47555–47563 (2004). ArticleCASPubMed Google Scholar
Hernández, H.L. et al. MiaB, a bifunctional radical-_S_-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry46, 5140–5147 (2007). ArticlePubMed Google Scholar
Lee, K.-H. et al. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry48, 10162–10174 (2009). ArticleCASPubMed Google Scholar
Yokoyama, K., Numakura, M., Kudo, F., Ohmori, D. & Eguchi, T. Characterization and mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin. J. Am. Chem. Soc.129, 15147–15155 (2007). ArticleCASPubMed Google Scholar
Grove, T.L., Ahlum, J.H., Sharma, P., Krebs, C. & Booker, S.J. A consensus mechanism for radical SAM-dependent dehydrogenation? BtrN contains two [4Fe-4S] clusters. Biochemistry49, 3783–3785 (2010). ArticleCASPubMed Google Scholar
Fang, Q., Peng, J. & Dierks, T. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB. J. Biol. Chem.279, 14570–14578 (2004). ArticleCASPubMed Google Scholar
Grove, T.L., Lee, K.-H., St. Clair, J., Krebs, C. & Booker, S.J. In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry47, 7523–7538 (2008). ArticleCASPubMed Google Scholar
Hagen, K. & Watson, A. Synthetic routes to iron sulfide (Fe2S2, Fe3S4, Fe4S4, and Fe6S9), clusters from the common precursor tetrakis(ethanethiolate)ferrate2– ion ([Fe(SC2H5)4]2–): structures and properties of [Fe3S4(SR)4]3– and bis(ethanethiolate)nonathioxohexaferrate4– ion ([Fe6S9(SC2H5)2]4–), examples of the newest types of Fe-S-SR clusters. J. Am. Chem. Soc.105, 3905–3913 (1983). ArticleCAS Google Scholar
Külzer, R., Pils, T., Kappl, R., Hüttermann, J. & Knappe, J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J. Biol. Chem.273, 4897–4903 (1998). ArticlePubMed Google Scholar
Ugulava, N.B., Gibney, B.R. & Jarrett, J.T. Iron-sulfur cluster interconversions in biotin synthase: dissociation and reassociation of iron during conversion of [2Fe-2S] to [4Fe-4S] clusters. Biochemistry39, 5206–5214 (2000). ArticleCASPubMed Google Scholar
Duschene, K.S. & Broderick, J.B. The antiviral protein viperin is a radical SAM enzyme. FEBS Lett.584, 1263–1267 (2010). ArticleCASPubMed Google Scholar
Chatterjee, A. et al. Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nat. Chem. Biol.4, 758–765 (2008). ArticleCASPubMed Google Scholar
Murphy, K. et al. Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters. PLoS ONE6, e20852 (2011). ArticleCASPubMed Google Scholar
Oman, T.J. & van der Donk, W.A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol.6, 9–18 (2010). ArticleCASPubMed Google Scholar
Xie, L., Miller, L., Chatterjee, C. & Averin, O. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science303, 679–681 (2004). ArticleCASPubMed Google Scholar
Chatterjee, C., Paul, M., Xie, L. & van der Donk, W.A. Biosynthesis and mode of action of lantibiotics. Chem. Rev.105, 633–684 (2005). ArticleCASPubMed Google Scholar
Roach, P.L., Clifton, I., Hensgens, C. & Shibata, N. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature387, 827–830 (1997). ArticleCASPubMed Google Scholar
Layer, G., Verfürth, K., Mahlitz, E. & Jahn, D. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J. Biol. Chem.277, 34136–34142 (2002). ArticleCASPubMed Google Scholar