How pathogenic bacteria evade mammalian sabotage in the battle for iron (original) (raw)
Posey, J.E. & Gherardini, F.C. Lack of a role for iron in the Lyme disease pathogen. Science288, 1651–1653 (2000). CASPubMed Google Scholar
Weinberg, E.D. The Lactobacillus anomaly: total iron abstinence. Perspect. Biol. Med.40, 578–583 (1997). CASPubMed Google Scholar
Raymond, K.N., Dertz, E.A. & Kim, S.S. Enterobactin: an archetype for microbial iron transport. Proc. Natl Acad. Sci. USA100, 3584–3588 (2003). CASPubMedPubMed Central Google Scholar
Andrews, S.C., Robinson, A.K. & Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev.27, 215–237 (2003). CASPubMed Google Scholar
Crosa, J.H. & Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev.66, 223–249 (2002). CASPubMedPubMed Central Google Scholar
Gehring, A.M., Mori, I. & Walsh, C.T. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry37, 2648–2659 (1998). CASPubMed Google Scholar
Walsh, C., Liu, J., Rusnak, F. & Sakaitani, M. Molecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway. Chem. Rev.90, 1105–1129 (1990). CAS Google Scholar
Lambalot, R.H. et al. A new enzyme superfamily - the phosphopantetheinyl transferases. Chem. Biol.3, 923–936 (1996). CASPubMed Google Scholar
Furrer, J.L., Sanders, D.N., Hook-Barnard, I.G. & McIntosh, M.A. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol. Microbiol.44, 1225–1234 (2002). CASPubMed Google Scholar
Bleuel, C. et al. TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J. Bacteriol.187, 6701–6707 (2005). CASPubMedPubMed Central Google Scholar
Crosa, J.H., Mey, A.R. & Payne, S.M. Iron Transport in Bacteria. (ASM Press, Washington, DC, 2004) Google Scholar
Annamalai, R., Jin, B., Cao, Z., Newton, S.M. & Klebba, P.E. Recognition of ferric catecholates by FepA. J. Bacteriol.186, 3578–3589 (2004). CASPubMedPubMed Central Google Scholar
Buchanan, S.K. et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol.6, 56–63 (1999). CASPubMed Google Scholar
Faraldo-Gomez, J.D. & Sansom, M.S. Acquisition of siderophores in gram-negative bacteria. Nat. Rev. Mol. Cell Biol.4, 105–116 (2003). CASPubMed Google Scholar
Lin, H., Fischbach, M.A., Liu, D.R. & Walsh, C.T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc.127, 11075–11084 (2005). CASPubMedPubMed Central Google Scholar
Hantke, K. Iron and metal regulation in bacteria. Curr. Opin. Microbiol.4, 172–177 (2001). CASPubMed Google Scholar
Harris, W.R. et al. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. J. Am. Chem. Soc.101, 6097–6104 (1979). CAS Google Scholar
Challis, G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem6, 601–611 (2005). CASPubMed Google Scholar
Harris, W.R., Carrano, C.J. & Raymond, K.N. Coordination chemistry of microbial iron transport compounds. 16. Isolation, characterization, and formation constants of ferric aerobactin. J. Am. Chem. Soc.110, 2722–2727 (1979). Google Scholar
Brock, J.H., Williams, P.H., Liceaga, J. & Wooldridge, K.G. Relative availability of transferrin-bound iron and cell-derived iron to aerobactin-producing and enterochelin-producing strains of Escherichia coli and to other microorganisms. Infect. Immun.59, 3185–3190 (1991). CASPubMedPubMed Central Google Scholar
Der Vartanian, M. Differences in excretion and efficiency of the aerobactin and enterochelin siderophores in a bovine pathogenic strain of Escherichia coli. Infect. Immun.56, 413–418 (1988). CASPubMedPubMed Central Google Scholar
Konopka, K., Bindereif, A. & Neilands, J.B. Aerobactin-mediated utilization of transferrin iron. Biochemistry21, 6503–6508 (1982). CASPubMed Google Scholar
Williams, P.H. & Carbonetti, N.H. Iron, siderophores, and the pursuit of virulence: independence of the aerobactin and enterochelin iron uptake systems in Escherichia coli. Infect. Immun.51, 942–947 (1986). CASPubMedPubMed Central Google Scholar
Goetz, D.H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell10, 1033–1043 (2002). CASPubMed Google Scholar
Holmes, M.A., Paulsene, W., Jide, X., Ratledge, C. & Strong, R.K. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure13, 29–41 (2005). CASPubMed Google Scholar
Flo, T.H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature432, 917–921 (2004). CASPubMed Google Scholar
Devireddy, L.R., Gazin, C., Zhu, X. & Green, M.R. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell123, 1293–1305 (2005). CASPubMed Google Scholar
Devireddy, L.R., Teodoro, J.G., Richard, F.A. & Green, M.R. Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science293, 829–834 (2001). CASPubMed Google Scholar
Luo, M. et al. Enzymatic tailoring of the bacterial siderophore enterobactin alters membrane partitioning and iron acquisition. ACS Chem. Biol. (in the press).
Konopka, K. & Neilands, J.B. Effect of serum albumin on siderophore-mediated utilization of transferrin iron. Biochemistry23, 2122–2127 (1984). CASPubMed Google Scholar
Bister, B. et al. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals17, 471–481 (2004). CASPubMed Google Scholar
Koczura, R. & Kaznowski, A. Occurrence of the Yersinia high-pathogenicity island and iron uptake systems in clinical isolates of Klebsiella pneumoniae. Microb. Pathog.35, 197–202 (2003). CASPubMed Google Scholar
Baumler, A.J. et al. Identification of a new iron regulated locus of Salmonella typhi. Gene183, 207–213 (1996). CASPubMed Google Scholar
Baumler, A.J. et al. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J. Bacteriol.180, 1446–1453 (1998). CASPubMedPubMed Central Google Scholar
Foster, J.W. & Hall, H.K. Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J. Bacteriol.174, 4317–4323 (1992). CASPubMedPubMed Central Google Scholar
Patzer, S.I., Baquero, M.R., Bravo, D., Moreno, F. & Hantke, K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology149, 2557–2570 (2003). CASPubMed Google Scholar
McClelland, M. et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature413, 852–856 (2001). CASPubMed Google Scholar
Welch, R.A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA99, 17020–17024 (2002). CASPubMedPubMed Central Google Scholar
Grozdanov, L. et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J. Bacteriol.186, 5432–5441 (2004). CASPubMedPubMed Central Google Scholar
Paulsen, I.T. et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science299, 2071–2074 (2003). CASPubMed Google Scholar
Dobrindt, U. et al. Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect. Immun.70, 6365–6372 (2002). CASPubMedPubMed Central Google Scholar
Sorsa, L.J., Dufke, S., Heesemann, J. & Schubert, S. Characterization of an iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia coli: evidence for horizontal transfer of a chromosomal virulence factor. Infect. Immun.71, 3285–3293 (2003). CASPubMedPubMed Central Google Scholar
Snyder, J.A. et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun.72, 6373–6381 (2004). CASPubMedPubMed Central Google Scholar
Chen, Y.T. et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene337, 189–198 (2004). CASPubMed Google Scholar
Lagos, R. et al. Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin. Mol. Microbiol.42, 229–243 (2001). CASPubMed Google Scholar
Dean, C.R. & Poole, K. Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Mol. Microbiol.8, 1095–1103 (1993). CASPubMed Google Scholar
Hantke, K., Nicholson, G., Rabsch, W. & Winkelmann, G. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc. Natl Acad. Sci. USA100, 3677–3682 (2003). CASPubMedPubMed Central Google Scholar
Liu, J. & Mushegian, A. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci.12, 1418–1431 (2003). CASPubMedPubMed Central Google Scholar
Walsh, C., Freel Meyers, C.L. & Losey, H.C. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J. Med. Chem.46, 3425–3436 (2003). CASPubMed Google Scholar
Fischbach, M.A., Lin, H., Liu, D.R. & Walsh, C.T. In vitro characterization of IroB, a pathogen-associated _C_-glycosyltransferase. Proc. Natl Acad. Sci. USA102, 571–576 (2005). CASPubMed Google Scholar
Weymouth-Wilson, A.C. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep.14, 99–110 (1997). CASPubMed Google Scholar
Galm, U. et al. Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin derivatives produced by mutasynthesis. Antimicrob. Agents Chemother.48, 1307–1312 (2004). CASPubMedPubMed Central Google Scholar
Schlunzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature413, 814–821 (2001). CASPubMed Google Scholar
Lafitte, D. et al. DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry41, 7217–7223 (2002). CASPubMed Google Scholar
Janeway, C.A., Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). CASPubMed Google Scholar
Quiros, L.M., Aguirrezabalaga, I., Olano, C., Mendez, C. & Salas, J.A. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol. Microbiol.28, 1177–1185 (1998). CASPubMed Google Scholar
Walsh, C.T. Posttranslational Modification of Proteins: Expanding Nature's Inventory (Roberts and Co., Greenwood Village, Colorado, 2006). Google Scholar
Bililign, T., Griffith, B.R. & Thorson, J.S. Structure, activity, synthesis and biosynthesis of aryl-_C_-glycosides. Nat. Prod. Rep.22, 742–760 (2005). CASPubMed Google Scholar
Hartmann, S. & Hofsteenge, J. Properdin, the positive regulator of complement, is highly C-mannosylated. J. Biol. Chem.275, 28569–28574 (2000). CASPubMed Google Scholar
Hofsteenge, J., Blommers, M., Hess, D., Furmanek, A. & Miroshnichenko, O. The four terminal components of the complement system are C-mannosylated on multiple tryptophan residues. J. Biol. Chem.274, 32786–32794 (1999). CASPubMed Google Scholar
Krieg, J. et al. C-Mannosylation of human RNase 2 is an intracellular process performed by a variety of cultured cells. J. Biol. Chem.272, 26687–26692 (1997). CASPubMed Google Scholar
Perez-Vilar, J., Randell, S.H. & Boucher, R.C. C-Mannosylation of MUC5AC and MUC5B Cys subdomains. Glycobiology14, 325–337 (2004). CASPubMed Google Scholar
Trefzer, A. et al. Function of glycosyltransferase genes involved in urdamycin A biosynthesis. Chem. Biol.7, 133–142 (2000). CASPubMed Google Scholar
McMullen, M.D. et al. Quantitative trait loci and metabolic pathways. Proc. Natl Acad. Sci. USA95, 1996–2000 (1998). CASPubMedPubMed Central Google Scholar
Zhu, M., Valdebenito, M., Winkelmann, G. & Hantke, K. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology151, 2363–2372 (2005). CASPubMed Google Scholar
Luo, M., Fadeev, E.A. & Groves, J.T. Membrane dynamics of the amphiphilic siderophore, acinetoferrin. J. Am. Chem. Soc.127, 1726–1736 (2005). CASPubMed Google Scholar
Ratledge, C. & Ewing, M. The occurrence of carboxymycobactin, the siderophore of pathogenic mycobacteria, as a second extracellular siderophore in Mycobacterium smegmatis. Microbiology142, 2207–2212 (1996). CASPubMed Google Scholar
Destoumieux-Garzon, D., Peduzzi, J. & Rebuffat, S. Focus on modified microcins: structural features and mechanisms of action. Biochimie84, 511–519 (2002). CASPubMed Google Scholar
Li, Y.M., Milne, J.C., Madison, L.L., Kolter, R. & Walsh, C.T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science274, 1188–1193 (1996). CASPubMed Google Scholar
Bayro, M.J. et al. Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J. Am. Chem. Soc.125, 12382–12383 (2003). CASPubMed Google Scholar
Rosengren, K.J. et al. Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J. Am. Chem. Soc.125, 12464–12474 (2003). CASPubMed Google Scholar
Semenova, E., Yuzenkova, Y., Peduzzi, J., Rebuffat, S. & Severinov, K. Structure-activity analysis of microcinJ25: distinct parts of the threaded lasso molecule are responsible for interaction with bacterial RNA polymerase. J. Bacteriol.187, 3859–3863 (2005). CASPubMedPubMed Central Google Scholar
Wilson, K.A. et al. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J. Am. Chem. Soc.125, 12475–12483 (2003). CASPubMed Google Scholar
Lagos, R., Wilkens, M., Vergara, C., Cecchi, X. & Monasterio, O. Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett.321, 145–148 (1993). CASPubMed Google Scholar
Thomas, X. et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J. Biol. Chem.279, 28233–28242 (2004). CASPubMed Google Scholar
Lagos, R., Villanueva, J.E. & Monasterio, O. Identification and properties of the genes encoding microcin E492 and its immunity protein. J. Bacteriol.181, 212–217 (1999). CASPubMedPubMed Central Google Scholar
Strahsburger, E., Baeza, M., Monasterio, O. & Lagos, R. Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Antimicrob. Agents Chemother.49, 3083–3086 (2005). CASPubMedPubMed Central Google Scholar
Schubert, S., Fischer, D. & Heesemann, J. Ferric enterochelin transport in Yersinia enterocolitica: molecular and evolutionary aspects. J. Bacteriol.181, 6387–6395 (1999). CASPubMedPubMed Central Google Scholar
Trefzer, A. et al. Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob. Agents Chemother.46, 1174–1182 (2002). CASPubMedPubMed Central Google Scholar