Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A (original) (raw)
References
Raught, B., Gingras, A.-C. & Sonenberg, N. Regulation of ribosomal recruitment in eukaryotes. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 245–293 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000). Google Scholar
Pestova, T.V. et al. Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. USA98, 7029–7036 (2001). CASPubMed Google Scholar
Duncan, R., Milburn, S.C. & Hershey, J.W. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J. Biol. Chem.262, 380–388 (1987). CASPubMed Google Scholar
Conroy, S.C., Dever, T.E., Owens, C.L. & Merrick, W.C. Characterization of the 46,000-dalton subunit of eIF-4F. Arch. Biochem. Biophys.282, 363–371 (1990). CASPubMed Google Scholar
Yoder-Hill, J., Pause, A., Sonenberg, N. & Merrick, W.C. The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. J. Biol. Chem.268, 5566–5573 (1993). CASPubMed Google Scholar
Grifo, J.A., Tahara, S.M., Morgan, M.A., Shatkin, A.J. & Merrick, W.C. New initiation factor activity required for globin mRNA translation. J. Biol. Chem.258, 5804–5810 (1983). CASPubMed Google Scholar
Edery, I. et al. Involvement of eukaryotic initiation factor 4A in the cap recognition process. J. Biol. Chem.258, 11398–11403 (1983). CASPubMed Google Scholar
Korneeva, N.L., First, E.A., Benoit, C.A. & Rhoads, R.E. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J. Biol. Chem.280, 1872–1881 (2005). CASPubMed Google Scholar
Rogers, G.W., Jr., Richter, N.J. & Merrick, W.C. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem.274, 12236–12244 (1999). CASPubMed Google Scholar
Pause, A. & Sonenberg, N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J.11, 2643–2654 (1992). CASPubMedPubMed Central Google Scholar
Oberer, M., Marintchev, A. & Wagner, G. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev.19, 2212–2223 (2005). CASPubMedPubMed Central Google Scholar
Ray, B.K. et al. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem.260, 7651–7658 (1985). CASPubMed Google Scholar
Pause, A., Methot, N., Svitkin, Y., Merrick, W.C. & Sonenberg, N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J.13, 1205–1215 (1994). CASPubMedPubMed Central Google Scholar
Svitkin, Y.V. et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA7, 382–394 (2001). CASPubMedPubMed Central Google Scholar
Richter-Cook, N.J., Dever, T.E., Hensold, J.O. & Merrick, W.C. Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J. Biol. Chem.273, 7579–7587 (1998). CASPubMed Google Scholar
Novac, O., Guenier, A.S. & Pelletier, J. Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Nucleic Acids Res.32, 902–915 (2004). CASPubMedPubMed Central Google Scholar
Higa, T., Tanaka, J., Tsukitani, Y. & Kikuchi, H. Hippuristanols, cytotoxic polyoxygenated steroids from the gorgonian Isis hippuris. Chem. Lett. (Jpn.)11, 1647–1650 (1981). Google Scholar
Sonenberg, N. ATP/Mg++-dependent cross-linking of cap binding proteins to the 5′ end of eukaryotic mRNA. Nucleic Acids Res.9, 1643–1656 (1981). CASPubMedPubMed Central Google Scholar
Grifo, J.A., Abramson, R.D., Satler, C.A. & Merrick, W.C. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem.259, 8648–8654 (1984). CASPubMed Google Scholar
Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell12, 5–14 (2003). CASPubMed Google Scholar
Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell102, 511–520 (2000). CASPubMed Google Scholar
Pestova, T.V. & Hellen, C.U. Translation elongation after assembly of ribosomes on the cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev.17, 181–186 (2003). CASPubMedPubMed Central Google Scholar
Pisarev, A.V. et al. Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J. Virol.78, 4487–4497 (2004). CASPubMedPubMed Central Google Scholar
Chard, L.S., Kaku, Y., Jones, B., Nayak, A. & Belsham, G.J. Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. J. Virol.80, 1271–1279 (2006). CASPubMedPubMed Central Google Scholar
Daniels-McQueen, S., Detjen, B.M., Grifo, J.A., Merrick, W.C. & Thach, R.E. Unusual requirements for optimum translation of polio viral RNA in vitro. J. Biol. Chem.258, 7195–7199 (1983). CASPubMed Google Scholar
Gradi, A., Svitkin, Y.V., Imataka, H. & Sonenberg, N. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc. Natl. Acad. Sci. USA95, 11089–11094 (1998). CASPubMed Google Scholar
Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry37, 2194–2206 (1998). CASPubMed Google Scholar
Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry37, 2180–2193 (1998). CASPubMed Google Scholar
Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol.5, 232–241 (2004). CASPubMed Google Scholar
Pause, A., Methot, N. & Sonenberg, N. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol.13, 6789–6798 (1993). CASPubMedPubMed Central Google Scholar
Cheng, Z., Coller, J., Parker, R. & Song, H. Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA11, 1258–1270 (2005). CASPubMedPubMed Central Google Scholar
Story, R.M., Li, H. & Abelson, J.N. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA98, 1465–1470 (2001). CASPubMed Google Scholar
Shi, H., Cordin, O., Minder, C.M., Linder, P. & Xu, R.M. Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc. Natl. Acad. Sci. USA101, 17628–17633 (2004). CASPubMed Google Scholar
Bordeleau, M.E. et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl. Acad. Sci. USA102, 10460–10465 (2005). CASPubMed Google Scholar
Seal, S.N., Schmidt, A. & Marcus, A. Eukaryotic initiation factor 4A is the component that interacts with ATP in protein chain initiation. Proc. Natl. Acad. Sci. USA80, 6562–6565 (1983). CASPubMed Google Scholar
Pestova, T.V. & Kolupaeva, V.G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev.16, 2906–2922 (2002). CASPubMedPubMed Central Google Scholar
Altmann, M. et al. Translation initiation factor-dependent extracts from Saccharomyces cerevisiae. Biochim. Biophys. Acta1050, 155–159 (1990). CASPubMed Google Scholar
Altmann, M., Blum, S., Wilson, T.M. & Trachsel, H. The 5′-leader sequence of tobacco mosaic virus RNA mediates initiation-factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. Gene91, 127–129 (1990). CASPubMed Google Scholar
Blum, S. et al. ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA89, 7664–7668 (1992). CASPubMed Google Scholar
Gehrke, L., Auron, P.E., Quigley, G.J., Rich, A. & Sonenberg, N. 5'-Conformation of capped alfalfa mosaic virus ribonucleic acid 4 may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry22, 5157–5164 (1983). CASPubMed Google Scholar
Bodian, D.M. Polyomyelitis: pathogenesis and histopathology. in Viral and Rickettsial Infections of Man (eds. Rivers, T.M. & Horsfall, F.L.) 479–498 (Lippincott, Philadelphia, 1959). Google Scholar
Kauder, S.E. & Racaniello, V.R. Poliovirus tropism and attenuation are determined after internal ribosome entry. J. Clin. Invest.113, 1743–1753 (2004). CASPubMedPubMed Central Google Scholar
Nielsen, P.J. & Trachsel, H. The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J.7, 2097–2105 (1988). CASPubMedPubMed Central Google Scholar
Higa, T., Tanaka, J. & Tachibana, K. 18-oxygenated polyfunctional steriods from the gorgonian Isis hippuris. Tetrahed. Lett.22, 2777–2780 (1981). CAS Google Scholar
Poulin, F., Gingras, A.C., Olsen, H., Chevalier, S. & Sonenberg, N. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J. Biol. Chem.273, 14002–14007 (1998). CASPubMed Google Scholar
Wilson, J.E., Powell, M.J., Hoover, S.E. & Sarnow, P. Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol. Cell. Biol.20, 4990–4999 (2000). CASPubMedPubMed Central Google Scholar
Pause, A. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature371, 762–767 (1994). CASPubMed Google Scholar
Uchida, N., Hoshino, S., Imataka, H., Sonenberg, N. & Katada, T. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in cap/poly(A)-dependent translation. J. Biol. Chem.277, 50286–50292 (2002). CASPubMed Google Scholar
Bernstein, H.D., Sonenberg, N. & Baltimore, D. Poliovirus mutant that does not selectively inhibit host cell protein synthesis. Mol. Cell. Biol.5, 2913–2923 (1985). CASPubMedPubMed Central Google Scholar
Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol.11, 346–351 (2004). CASPubMed Google Scholar