Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A (original) (raw)

References

  1. Raught, B., Gingras, A.-C. & Sonenberg, N. Regulation of ribosomal recruitment in eukaryotes. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 245–293 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000).
    Google Scholar
  2. Pestova, T.V. et al. Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. USA 98, 7029–7036 (2001).
    CAS PubMed Google Scholar
  3. Duncan, R., Milburn, S.C. & Hershey, J.W. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J. Biol. Chem. 262, 380–388 (1987).
    CAS PubMed Google Scholar
  4. Conroy, S.C., Dever, T.E., Owens, C.L. & Merrick, W.C. Characterization of the 46,000-dalton subunit of eIF-4F. Arch. Biochem. Biophys. 282, 363–371 (1990).
    CAS PubMed Google Scholar
  5. Yoder-Hill, J., Pause, A., Sonenberg, N. & Merrick, W.C. The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. J. Biol. Chem. 268, 5566–5573 (1993).
    CAS PubMed Google Scholar
  6. Grifo, J.A., Tahara, S.M., Morgan, M.A., Shatkin, A.J. & Merrick, W.C. New initiation factor activity required for globin mRNA translation. J. Biol. Chem. 258, 5804–5810 (1983).
    CAS PubMed Google Scholar
  7. Edery, I. et al. Involvement of eukaryotic initiation factor 4A in the cap recognition process. J. Biol. Chem. 258, 11398–11403 (1983).
    CAS PubMed Google Scholar
  8. Korneeva, N.L., First, E.A., Benoit, C.A. & Rhoads, R.E. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J. Biol. Chem. 280, 1872–1881 (2005).
    CAS PubMed Google Scholar
  9. Rogers, G.W., Jr., Richter, N.J. & Merrick, W.C. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem. 274, 12236–12244 (1999).
    CAS PubMed Google Scholar
  10. Pause, A. & Sonenberg, N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643–2654 (1992).
    CAS PubMed PubMed Central Google Scholar
  11. Oberer, M., Marintchev, A. & Wagner, G. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev. 19, 2212–2223 (2005).
    CAS PubMed PubMed Central Google Scholar
  12. Ray, B.K. et al. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260, 7651–7658 (1985).
    CAS PubMed Google Scholar
  13. Pause, A., Methot, N., Svitkin, Y., Merrick, W.C. & Sonenberg, N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 13, 1205–1215 (1994).
    CAS PubMed PubMed Central Google Scholar
  14. Svitkin, Y.V. et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394 (2001).
    CAS PubMed PubMed Central Google Scholar
  15. Richter-Cook, N.J., Dever, T.E., Hensold, J.O. & Merrick, W.C. Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J. Biol. Chem. 273, 7579–7587 (1998).
    CAS PubMed Google Scholar
  16. Novac, O., Guenier, A.S. & Pelletier, J. Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Nucleic Acids Res. 32, 902–915 (2004).
    CAS PubMed PubMed Central Google Scholar
  17. Higa, T., Tanaka, J., Tsukitani, Y. & Kikuchi, H. Hippuristanols, cytotoxic polyoxygenated steroids from the gorgonian Isis hippuris. Chem. Lett. (Jpn.) 11, 1647–1650 (1981).
    Google Scholar
  18. Sonenberg, N. ATP/Mg++-dependent cross-linking of cap binding proteins to the 5′ end of eukaryotic mRNA. Nucleic Acids Res. 9, 1643–1656 (1981).
    CAS PubMed PubMed Central Google Scholar
  19. Grifo, J.A., Abramson, R.D., Satler, C.A. & Merrick, W.C. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259, 8648–8654 (1984).
    CAS PubMed Google Scholar
  20. Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).
    CAS PubMed Google Scholar
  21. Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520 (2000).
    CAS PubMed Google Scholar
  22. Pestova, T.V. & Hellen, C.U. Translation elongation after assembly of ribosomes on the cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev. 17, 181–186 (2003).
    CAS PubMed PubMed Central Google Scholar
  23. Pisarev, A.V. et al. Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J. Virol. 78, 4487–4497 (2004).
    CAS PubMed PubMed Central Google Scholar
  24. Chard, L.S., Kaku, Y., Jones, B., Nayak, A. & Belsham, G.J. Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. J. Virol. 80, 1271–1279 (2006).
    CAS PubMed PubMed Central Google Scholar
  25. Daniels-McQueen, S., Detjen, B.M., Grifo, J.A., Merrick, W.C. & Thach, R.E. Unusual requirements for optimum translation of polio viral RNA in vitro. J. Biol. Chem. 258, 7195–7199 (1983).
    CAS PubMed Google Scholar
  26. Gradi, A., Svitkin, Y.V., Imataka, H. & Sonenberg, N. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc. Natl. Acad. Sci. USA 95, 11089–11094 (1998).
    CAS PubMed Google Scholar
  27. Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194–2206 (1998).
    CAS PubMed Google Scholar
  28. Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37, 2180–2193 (1998).
    CAS PubMed Google Scholar
  29. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232–241 (2004).
    CAS PubMed Google Scholar
  30. Pause, A., Methot, N. & Sonenberg, N. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13, 6789–6798 (1993).
    CAS PubMed PubMed Central Google Scholar
  31. Cheng, Z., Coller, J., Parker, R. & Song, H. Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA 11, 1258–1270 (2005).
    CAS PubMed PubMed Central Google Scholar
  32. Story, R.M., Li, H. & Abelson, J.N. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 98, 1465–1470 (2001).
    CAS PubMed Google Scholar
  33. Shi, H., Cordin, O., Minder, C.M., Linder, P. & Xu, R.M. Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc. Natl. Acad. Sci. USA 101, 17628–17633 (2004).
    CAS PubMed Google Scholar
  34. Bordeleau, M.E. et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl. Acad. Sci. USA 102, 10460–10465 (2005).
    CAS PubMed Google Scholar
  35. Seal, S.N., Schmidt, A. & Marcus, A. Eukaryotic initiation factor 4A is the component that interacts with ATP in protein chain initiation. Proc. Natl. Acad. Sci. USA 80, 6562–6565 (1983).
    CAS PubMed Google Scholar
  36. Pestova, T.V. & Kolupaeva, V.G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002).
    CAS PubMed PubMed Central Google Scholar
  37. Altmann, M. et al. Translation initiation factor-dependent extracts from Saccharomyces cerevisiae. Biochim. Biophys. Acta 1050, 155–159 (1990).
    CAS PubMed Google Scholar
  38. Altmann, M., Blum, S., Wilson, T.M. & Trachsel, H. The 5′-leader sequence of tobacco mosaic virus RNA mediates initiation-factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. Gene 91, 127–129 (1990).
    CAS PubMed Google Scholar
  39. Blum, S. et al. ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89, 7664–7668 (1992).
    CAS PubMed Google Scholar
  40. Gehrke, L., Auron, P.E., Quigley, G.J., Rich, A. & Sonenberg, N. 5'-Conformation of capped alfalfa mosaic virus ribonucleic acid 4 may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry 22, 5157–5164 (1983).
    CAS PubMed Google Scholar
  41. Bodian, D.M. Polyomyelitis: pathogenesis and histopathology. in Viral and Rickettsial Infections of Man (eds. Rivers, T.M. & Horsfall, F.L.) 479–498 (Lippincott, Philadelphia, 1959).
    Google Scholar
  42. Kauder, S.E. & Racaniello, V.R. Poliovirus tropism and attenuation are determined after internal ribosome entry. J. Clin. Invest. 113, 1743–1753 (2004).
    CAS PubMed PubMed Central Google Scholar
  43. Nielsen, P.J. & Trachsel, H. The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J. 7, 2097–2105 (1988).
    CAS PubMed PubMed Central Google Scholar
  44. Higa, T., Tanaka, J. & Tachibana, K. 18-oxygenated polyfunctional steriods from the gorgonian Isis hippuris. Tetrahed. Lett. 22, 2777–2780 (1981).
    CAS Google Scholar
  45. Poulin, F., Gingras, A.C., Olsen, H., Chevalier, S. & Sonenberg, N. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J. Biol. Chem. 273, 14002–14007 (1998).
    CAS PubMed Google Scholar
  46. Wilson, J.E., Powell, M.J., Hoover, S.E. & Sarnow, P. Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol. Cell. Biol. 20, 4990–4999 (2000).
    CAS PubMed PubMed Central Google Scholar
  47. Pause, A. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371, 762–767 (1994).
    CAS PubMed Google Scholar
  48. Uchida, N., Hoshino, S., Imataka, H., Sonenberg, N. & Katada, T. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in cap/poly(A)-dependent translation. J. Biol. Chem. 277, 50286–50292 (2002).
    CAS PubMed Google Scholar
  49. Bernstein, H.D., Sonenberg, N. & Baltimore, D. Poliovirus mutant that does not selectively inhibit host cell protein synthesis. Mol. Cell. Biol. 5, 2913–2923 (1985).
    CAS PubMed PubMed Central Google Scholar
  50. Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–351 (2004).
    CAS PubMed Google Scholar

Download references