Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models (original) (raw)

References

  1. Knutson, T. R. et al. Tropical cyclones and climate change. Nature Geosci. 3, 157–163 (2010).
    Article CAS Google Scholar
  2. Villarini, G., Vecchi, G. A. & Smith, J. A. Modeling of the dependence of tropical storm counts in the North Atlantic Basin on climate indices. Mon. Weath. Rev. 138, 2681–2705 (2010).
    Article Google Scholar
  3. Villarini, G., Vecchi, G. A., Knutson, T. R., Zhao, M. & Smith, J. A. North Atlantic tropical storm frequency response to anthropogenic forcing: Projections and sources of uncertainty. J. Clim. 24, 3224–3238 (2011).
    Article Google Scholar
  4. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Article Google Scholar
  5. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).
    Article Google Scholar
  6. Sobel, A. H., Held, I. M. & Bretherton, C. S. The ENSO signal in tropical tropospheric temperature. J. Clim. 15, 2702–2706 (2002).
    Article Google Scholar
  7. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).
    Article CAS Google Scholar
  8. Latif, M., Keenlyside, N. & Bader, J. Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett. 34, L01710 (2007).
    Article Google Scholar
  9. Vecchi, G. A. & Soden, B. J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1071 (2007).
    Article CAS Google Scholar
  10. Ramsay, H. A. & Sobel, A. H. Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Clim. 24, 183–193 (2011).
    Article Google Scholar
  11. Vecchi, G. A., Swanson, K. L. & Soden, B. J. Whither hurricane activity? Science 322, 687–689 (2008).
    Article CAS Google Scholar
  12. Donner, L. J. et al. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Clim. 24, 3484–3519 (2011).
    Article Google Scholar
  13. Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate change. Eos Trans. Am. Geophys. Union 87, 233 (2006).
    Article Google Scholar
  14. Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 33, L17712 (2006).
    Article Google Scholar
  15. Zhang, R. & Delworth, T. L. A new method for attributing climate variations over the Atlantic Hurricane Basin’s main development region. Geophys. Res. Lett. 36, L06701 (2009).
    Google Scholar
  16. Oouchi, K. et al. Tropical cyclone climatology in a global warming climate as simulated in a 20-km-mesh global atmospheric model: Frequency and wind intensity analysis. J. Meteorol. Soc. Jpn 84, 259–276 (2006).
    Article Google Scholar
  17. Bender, M. A. et al. Model impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327, 454–458 (2010).
    Article CAS Google Scholar
  18. Bengtsson, L. et al. How may tropical cyclones change in a warmer climate? Tellus 59A, 539–561 (2007).
    Article Google Scholar
  19. Gualdi, S., Scoccimarro, E. & Navarra, A. Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Clim. 21, 5204–5228 (2008).
    Article Google Scholar
  20. Emanuel, K., Sundararajan, R. & Williams, J. Hurricanes and global warming—results from downscaling IPCC AR4 simulations. Bull. Am. Meteorol. Soc. 89, 347–367 (2008).
    Article Google Scholar
  21. Knutson, T. R., Sirutis, J. J., Garner, S. T., Vecchi, G. A. & Held, I. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geosci. 1, 359–364 (2008).
    Article CAS Google Scholar
  22. Sugi, M., Murakami, H. & Yoshimura, J. A reduction in global tropical cyclone frequency due to global warming. SOLA 5, 164–167 (2009).
    Article Google Scholar
  23. Zhao, M., Held, I. M., Lin, S. J. & Vecchi, G. A. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km-resolution GCM. J. Clim. 22, 6653–6678 (2009).
    Article Google Scholar
  24. Villarini, G. & Vecchi, G. A. North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes. J. Clim. 25, 625–637 (2012).
    Article Google Scholar
  25. Emanuel, K. Tropical cyclone activity downscaled from NOAA-CIRES Reanalysis, 1908–1958. J. Adv. Model. Earth Syst. 2, 1–12 (2010).
    Article Google Scholar
  26. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dynam. 37, 407–418 (2011).
    Article Google Scholar
  27. Xie, S-P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).
    Article Google Scholar
  28. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).
    Article Google Scholar
  29. McAdie, C., Landsea, C., Neumann, C. J., David, J. E. & Blake, E. S. Tropical Cyclones of the North Atlantic Ocean, 1851–2006 (with 2007 and 2008 track maps included.) (Natl Clim. Data Cent., 2009).
    Google Scholar
  30. Landsea, C. W., Vecchi, G. A., Bengtsson, L. & Knutson, T. R. Impact of duration thresholds on Atlantic tropical cyclone counts. J. Clim. 23, 2508–2519 (2010).
    Article Google Scholar

Download references