A global perspective on CMIP5 climate model biases (original) (raw)

References

  1. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93, 485–498 (2012).
    Article Google Scholar
  2. Li, G. & Xie, S.-P. Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett 39, L22703 (2012).
    Google Scholar
  3. Guilyardi, E. et al. Understanding El Niño in ocean-atmosphere general circulation models: Progress and challenges. Bull. Amer. Met. Soc. 90, 325–340 (2009).
    Article Google Scholar
  4. Collins, M. et al. The impact of global warming on the tropical Pacific and El Niño. Nature Geosci. 3, 391–397 (2010).
    Article CAS Google Scholar
  5. Mechoso, C. R. et al. Ocean-cloud-atmosphere-land interactions in the Southeastern Pacific: The VOCALS Program. Bull. Am. Met. Soc. (in the press, 2013).
  6. Mechoso, C. R. et al. The seasonal cycle over the tropical Pacific in general circulation models. Mon. Weath. Rev 123, 2825–2838 (1995).
    Article Google Scholar
  7. Huang, B., Hu, Z.-Z. & Jha, B. Evolution of model systematic errors in the tropical Atlantic basin from the NCEP coupled hindcasts. Clim. Dynam. 28, 661–682 (2007).
    Article Google Scholar
  8. Colas, F., McWilliams, J. C., Capet, X. & Jaison, K. Heat balance and eddies in the Peru–Chile current system. Clim. Dynam. 39, 509–529 (2012).
    Article Google Scholar
  9. Davey, M. K. et al. STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim. Dynam. 18, 403–420 (2002).
    Article Google Scholar
  10. Hwang, Y.-T. & Frierson, D. M. W. Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl Acad. Sci. USA 10.1073/pnas.1213302110PNAS (2013).
  11. Wunsch, C. & Heimbach, P. Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993 2004. J. Phys. Oceanogr. 36, 2012–2024 (2006).
    Article Google Scholar
  12. Zhang, R. Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett. 35, L20705 (2008).
    Article Google Scholar
  13. Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M. & Mann, M. E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett 32, L20708 (2005).
    Article Google Scholar
  14. Folland, C. K., Parker, D. E. & Palmer, T. N. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986).
    Article Google Scholar
  15. Delworth, T. L. & Mann, M. E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam. 16, 661–676 (2000).
    Article Google Scholar
  16. Zhang, R., Delworth, T. L. & Held, I. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature?. Geophys. Res. Lett 34, L02709 (2007).
    Google Scholar
  17. Stouffer, R. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).
    Article Google Scholar
  18. Wu, L., Li, C., Yang, C. & Xie, S.-P. Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Clim. 21, 3002–3019 (2008).
    Article Google Scholar
  19. Thompson, D. W. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).
    Article Google Scholar
  20. Zhang, R. & Delworth, T. L. Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, L23708 (2007).
    Google Scholar
  21. Meehl, G. A., Hu, A., Arblaster, J., Fasullo, J. & Trenberth, K. E. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 26, 7298–7310 (2013).
    Article Google Scholar
  22. Zhang, R. et al. Sensitivity of the North Atlantic Ocean circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model. J. Geophys. Res. 116, C12024 (2011).
    Article Google Scholar
  23. Broecker, W. S. Paleocean circulation during the last deglaciation: a bipolar seesaw?. Paleoceanography 13, 119–121 (1998).
    Article Google Scholar
  24. Weaver, A. J., Saenko, O. A., Clark, P. U. & Mitrovica, J. X. Meltwater pulse 1A from Antarctic as a trigger of the Bølling-Allerød warm interval. Science 299, 1709–1713 (2003).
    Article CAS Google Scholar
  25. Ma, H. & Wu, L. Global teleconnections in response to freshening over the Antarctic Ocean. J. Clim. 24, 1071–1088 (2011).
    Article Google Scholar
  26. Kang, S. M., Held, I. M. & Xie, S.-P. Contrasting the tropical response to zonally asymmetric extratropical and tropical thermal forcing. Clim. Dynam. 10.1007/s00382-013-1863-0 (2013).
  27. Wang, C., Enfield, D. B., Lee, S.-K. & Landsea, C. W. Influences of the Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. J. Clim. 19, 3011–3028 (2006).
    Article Google Scholar
  28. Wang, C., Lee, S.-K. & Mechoso, C. R. Inter-hemispheric influence of the Atlantic warm pool on the southeastern Pacific. J. Clim. 23, 404–418 (2010).
    Article Google Scholar
  29. Richter, I., Mechoso, C. R. & Robertson, A. W. What determines the position and intensity of the South Atlantic anticyclone in austral winter?—An AGCM study. J. Clim. 21, 214–229 (2008).
    Article Google Scholar
  30. Yeager, S. & Danabasoglu, G. Sensitivity of Atlantic meridional overturning circulation variability to parameterized Nordic Sea overflows in CCSM4. J. Clim. 25, 2077–2103 (2012).
    Article Google Scholar

Download references