Power-generation system vulnerability and adaptation to changes in climate and water resources (original) (raw)

References

  1. International Energy Statistics (US EIA, accessed 12 January 2015); http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=12.
  2. GEA Global Energy Assessment—Toward a Sustainable Future (Cambridge Univ. Press, 2012).
  3. Davies, E. G. R., Kyle, P. & Edmonds, J. A. An integrated assessment of global and regional water demands for electricity generation to 2095. Adv. Water Resour. 52, 296–313 (2013).
    Article Google Scholar
  4. Schar, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).
    Article Google Scholar
  5. Wetherald, R. T. & Manabe, S. Detectability of summer dryness caused by greenhouse warming. Climatic Change 43, 495–511 (1999).
    Article CAS Google Scholar
  6. Hamududu, B. & Killingtveit, A. Assessing climate change impacts on global hydropower. Energies 5, 305–322 (2012).
    Article Google Scholar
  7. Lehner, B., Czisch, G. & Vassolo, S. The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33, 839–855 (2005).
    Article Google Scholar
  8. Förster, H. & Lilliestam, J. Modeling thermoelectric power generation in view of climate change. Reg. Environ. Change 10, 327–338 (2010).
    Article Google Scholar
  9. van Vliet, M. T. H. et al. Vulnerability of US and European electricity supply to climate change. Nature Clim. Change 2, 676–681 (2012).
    Article Google Scholar
  10. Stucki, V. & Sojamo, S. Nouns and numbers of the water–energy–security nexus in Central Asia. Int. J. Wat. Resour. Dev. 28, 399–418 (2012).
    Article Google Scholar
  11. Scanlon, B. R., Duncan, I. & Reedy, R. C. Drought and the water–energy nexus in Texas. Environ. Res. Lett. 8, 045033 (2013).
    Article Google Scholar
  12. van Vuuren, D. et al. An energy vision: the transformation towards sustainability—interconnected challenges and solutions. Environ. Sustain. 4, 18–34 (2012).
    Google Scholar
  13. Olsson, G. Water and Energy: Threats and Opportunities Ch. 9.4, 113 (IWA Publishing, 2012).
    Google Scholar
  14. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (Cambridge Univ. Press, 2014).
    Google Scholar
  15. Pereira-Cardenal, S. et al. Assessing climate change impacts on the Iberian power system using a coupled water-power model. Climatic Change 126, 351–364 (2014).
    Article Google Scholar
  16. Hamlet, A. F., Lee, S.-Y., Mickelson, K. E. B. & Elsner, M. M. Effects of projected climate change on energy supply and demand in the Pacific Northwest and Washington State. Climatic Change 102, 103–128 (2010).
    Article Google Scholar
  17. Koch, H., Vögele, S., Kaltofen, M. & Grünewald, U. Trends in water demand and water availability for power plants—scenario analyses for the German capital Berlin. Climatic Change 110, 879–899 (2012).
    Article Google Scholar
  18. Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res. 99, 14415–14428 (1994).
    Article Google Scholar
  19. Yearsley, J. R. A semi-Lagrangian water temperature model for advection-dominated river systems. Wat. Resour. Res. 45, W12405 (2009).
    Article Google Scholar
  20. van Vliet, M. T. H. et al. Coupled daily streamflow and water temperature modelling in large river basins. Hydrol. Earth Syst. Sci. 16, 4303–4321 (2012).
    Article Google Scholar
  21. Koch, H. & Vögele, S. Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol. Econ. 68, 2031–2039 (2009).
    Article Google Scholar
  22. Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction: the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).
    Article Google Scholar
  23. van Vuuren, D. P. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Climatic Change 109, 95–116 (2011).
    Article Google Scholar
  24. Riahi, K. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33–57 (2011).
    Article CAS Google Scholar
  25. van Vliet, M. T. H. et al. Global river discharge and water temperature under climate change. Glob. Environ. Change 23, 450–464 (2013).
    Article Google Scholar
  26. Grubler, A. The costs of the French nuclear scale-up: a case of negative learning by doing. Energy Policy 38, 5174–5188 (2010).
    Article Google Scholar
  27. Healey, S. Scaling and Cost Dynamics of Pollution Control Technologies: Some Historical Examples (IIASA, 2013).
    Google Scholar
  28. Projected Costs of Generating Electricity (International Energy Agency and Nuclear Energy Agency, 2010).
  29. Energy Climate and Change—World Energy Outlook Special Report (International Energy Agency, 2015).
  30. Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies (National Renewable Energy Laboratory, 2011).
    Google Scholar
  31. World Electric Power Plants Database (Utility Data Institute, Platts Energy InfoStore, 2013); http://www.platts.com.
  32. Stillwell, A. S. & Webber, M. E. Novel methodology for evaluating economic feasibility of low-water cooling technology retrofits at power plants. Water Policy 15, 292–308 (2013).
    Article Google Scholar

Download references