The future intensification of hourly precipitation extremes (original) (raw)
References
Kunkel, K. E. et al. Monitoring and understanding trends in extreme storms: state of knowledge. Bull. Am. Meteorol. Soc.94, 499–514 (2013). Article Google Scholar
Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc.84, 1205–1217 (2003). Article Google Scholar
Utsumi, N., Seto, S., Kanae, S., Maeda, E. E. & Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett.38, L16708 (2011). Article Google Scholar
Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci.9, 24–28 (2016). ArticleCAS Google Scholar
Ban, N., Schmidli, J. & Schär, C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys. Res. Lett.42, 1165–1172 (2015). Article Google Scholar
Downton, M. W., Miller, J. Z. B. & Pielke, R. A. Jr Reanalysis of US National Weather Service flood loss database. Nat. Hazards Rev.6, 13–22 (2005). Article Google Scholar
Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci.1, 511–514 (2008). ArticleCAS Google Scholar
Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys.52, 522–555 (2014). Article Google Scholar
Hardwick Jones, R., Westra, S. & Sharma, A. Observed relationships between extreme sub daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett.37, L22805 (2010). Article Google Scholar
Neelin, J. D., Peters, O. & Hales, K. The transition to strong convection. J. Atmos. Sci.66, 2367–2384 (2009). Article Google Scholar
Prein, A. F. et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys.53, 323–361 (2015). Article Google Scholar
Kendon, E. J. et al. Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Am. Meteorol. Soc.http://dx.doi.org/10.1175/BAMS-D-15-0004.1 (2016).
Jones, T. R. & Randall, D. A. Quantifying the limits of convective parameterizations. J. Geophys. Res.116, D08210 (2011). Google Scholar
Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change4, 570–576 (2014). Article Google Scholar
Liu, C. et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dynam.http://dx.doi.org/10.1007/s00382-016-3327-9 (2016).
Skamarock, W. C. et al. A Description of the Advanced Research WRF version 2 Technical note (NCAR, 2005).
Dee, D. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc.137, 553–597 (2011). Article Google Scholar
Rasmussen, R. et al. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J. Clim.24, 3015–3048 (2011). Article Google Scholar
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc.93, 485–498 (2012). Article Google Scholar
Emori, S. & Brown, S. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett.32, L17706 (2005). Article Google Scholar
Maloney, E. D. et al. North American climate in CMIP5 experiments: part iii: assessment of twenty-first-century projections. J. Clim.27, 2230–2270 (2014). Article Google Scholar
Muschinski, T. & Katz, J. Trends in hourly rainfall statistics in the United States under a warming climate. Nat. Clim. Change3, 577–580 (2013). Article Google Scholar
Wuebbles, D. et al. CMIP5 climate model analyses: climate extremes in the United States. Bull. Am. Meteorol. Soc.95, 571–583 (2014). Article Google Scholar
Frierson, D. M. Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett.33, L24816 (2006). Article Google Scholar
Schär, C. et al. Percentile indices for assessing changes in heavy precipitation events. Climatic Change137, 201–216 (2016). Article Google Scholar
Data Documentation for Data Set 3240 (DSI-3240) Hourly Precipitation Data (National Climatic Data Center, 2013).
Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol.28, 2031–2064 (2008). Article Google Scholar
Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim.24, 3624–3648 (2011). Article Google Scholar
Hershfield, D. M. Rainfall Frequency Atlas of the United States: For Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years (Department of Commerce, Weather Bureau, 1963). Google Scholar
von Storch, H., Langenberg, H. & Feser, F. A spectral nudging technique for dynamical downscaling purposes. Monthly Weather Rev.128, 3664–3673 (2000). Article Google Scholar
Kröner, N. et al. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Clim. Dynam.http://dx.doi.org/10.1007/s00382-016-3276-3 (2016).
Wilks, D. S. Statistical Methods in the Atmospheric Sciences Vol. 100 (Academic, 2011). Google Scholar
Bukovsky, M. Masks for the Bukovsky Regionalization of North America (NCAR, 2012).
Varmaghani, A. An analytical formula for potential water vapor in an atmosphere of constant lapse rate. Terr. Atmos. Ocean Sci.23, 17–24 (2012). Article Google Scholar