Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity (original) (raw)
References
West, D.B., Boozer, C.N., Moody, D.L. & Atkinson, R.L. Dietary obesity in nine inbred mouse strains. Am. J. Physiol.262, R1025–R1032 (1992). CASPubMed Google Scholar
Wuschke, S., Dahm, S., Schmidt, C., Joost, H.G. & Al-Hasani, H. A meta-analysis of quantitative trait loci associated with body weight and adiposity in mice. Int. J. Obes. (Lond)31, 829–841 (2007). ArticleCAS Google Scholar
Rankinen, T. et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring)14, 529–644 (2006). Article Google Scholar
Crofford, O.B. & Davis, C.K. Jr. Growth characteristics, glucose tolerance and insulin sensitivity of New Zealand obese mice. Metabolism14, 271–280 (1965). ArticleCAS Google Scholar
Leiter, E.H. et al. NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes47, 1287–1295 (1998). ArticleCAS Google Scholar
Ortlepp, J.R. et al. A metabolic syndrome of hypertension, hyperinsulinaemia and hypercholesterolaemia in the New Zealand obese mouse. Eur. J. Clin. Invest.30, 195–202 (2000). ArticleCAS Google Scholar
Jurgens, H.S. et al. Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice. Physiol. Genomics25, 234–241 (2006). Article Google Scholar
Reifsnyder, P.C., Churchill, G. & Leiter, E.H. Maternal environment and genotype interact to establish diabesity in mice. Genome Res.10, 1568–1578 (2000). ArticleCAS Google Scholar
Giesen, K., Plum, L., Kluge, R., Ortlepp, J. & Joost, H.G. Diet-dependent obesity and hypercholesterolemia in the New Zealand obese mouse: identification of a quantitative trait locus for elevated serum cholesterol on the distal mouse chromosome 5. Biochem. Biophys. Res. Commun.304, 812–817 (2003). ArticleCAS Google Scholar
Jurgens, H.S. et al. Development of diabetes in obese, insulin-resistant mice: essential role of dietary carbohydrate in beta cell destruction. Diabetologia50, 1481–1489 (2007). ArticleCAS Google Scholar
Kluge, R. et al. Quantitative trait loci for obesity and insulin resistance (Nob1, Nob2) and their interaction with the leptin receptor allele (LeprA720T/T1044I) in New Zealand obese mice. Diabetologia43, 1565–1572 (2000). ArticleCAS Google Scholar
Plum, L. et al. Type 2 diabetes-like hyperglycemia in a backcross model of NZO and SJL mice: characterization of a susceptibility locus on chromosome 4 and its relation with obesity. Diabetes49, 1590–1596 (2000). ArticleCAS Google Scholar
Plum, L. et al. Characterisation of the mouse diabetes susceptibility locus Nidd/SJL: islet cell destruction, interaction with the obesity QTL Nob1, and effect of dietary fat. Diabetologia45, 823–830 (2002). ArticleCAS Google Scholar
Bernards, A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim. Biophys. Acta1603, 47–82 (2003). CASPubMed Google Scholar
Kane, S. et al. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem.277, 22115–22118 (2002). ArticleCAS Google Scholar
Pan, X., Eathiraj, S., Munson, M. & Lambright, D.G. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature442, 303–306 (2006). ArticleCAS Google Scholar
Rehwinkel, J., Raes, J. & Izaurralde, E. Nonsense-mediated mRNA decay: Target genes and functional diversification of effectors. Trends Biochem. Sci.31, 639–646 (2006). ArticleCAS Google Scholar
Stone, S. et al. TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum. Mol. Genet.15, 2709–2720 (2006). ArticleCAS Google Scholar
Meyre, D. et al. R125W coding variant in TBC1D1 confers risk for familial obesity and contributes to linkage on chromosome 4p14 in the French population. Hum. Mol. Genet.17, 1798–1802 (2008). ArticleCAS Google Scholar
Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science316, 1331–1336 (2007). ArticleCAS Google Scholar
Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science316, 1336–1341 (2007). ArticleCAS Google Scholar
Kotani, K., Peroni, O.D., Minokoshi, Y., Boss, O. & Kahn, B.B. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J. Clin. Invest.114, 1666–1675 (2004). ArticleCAS Google Scholar
Sakkou, M. et al. A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell Metab.5, 450–463 (2007). ArticleCAS Google Scholar
Herwig, R., Aanstad, P., Clark, M. & Lehrach, H. Statistical evaluation of differential expression on cDNA nylon arrays with replicated experiments. Nucleic Acids Res.29, E117 (2001). ArticleCAS Google Scholar
Carlotti, F. et al. Lentiviral vectors efficiently transduce quiescent mature 3T3–L1 adipocytes. Mol. Ther.9, 209–217 (2004). ArticleCAS Google Scholar
Bastie, C.C., Hajri, T., Drover, V.A., Grimaldi, P.A. & Abumrad, N.A. CD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness. Diabetes53, 2209–2216 (2004). ArticleCAS Google Scholar
Wong, G.W., Wang, J., Hug, C., Tsao, T.S. & Lodish, H.F. A family of Acrp30/adiponectin structural and functional paralogs. Proc. Natl. Acad. Sci. USA101, 10302–10307 (2004). ArticleCAS Google Scholar
Barnes, B.R. et al. The 5′-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J. Biol. Chem.279, 38441–38447 (2004). ArticleCAS Google Scholar