The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos (original) (raw)

References

  1. Satir, P. & Christensen, S.T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377–400 (2007).
    Article CAS Google Scholar
  2. Spektor, A., Tsang, W.Y., Khoo, D. & Dynlacht, B.D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).
    Article CAS Google Scholar
  3. Whitsett, J.A. & Tichelaar, J.W. Forkhead transcription factor HFH-4 and respiratory epithelial cell differentiation. Am. J. Respir. Cell Mol. Biol. 21, 153–154 (1999).
    Article CAS Google Scholar
  4. Hackett, B.P. et al. Primary structure of hepatocyte nuclear factor/forkhead homologue 4 and characterization of gene expression in the developing respiratory and reproductive epithelium. Proc. Natl. Acad. Sci. USA 92, 4249–4253 (1995).
    Article CAS Google Scholar
  5. Pelletier, G.J., Brody, S.L., Liapis, H., White, R.A. & Hackett, B.P. A human forkhead/winged-helix transcription factor expressed in developing pulmonary and renal epithelium. Am. J. Physiol. 274, L351–L359 (1998).
    CAS PubMed Google Scholar
  6. Lim, L., Zhou, H. & Costa, R.H. The winged helix transcription factor HFH-4 is expressed during choroid plexus epithelial development in the mouse embryo. Proc. Natl. Acad. Sci. USA 94, 3094–3099 (1997).
    Article CAS Google Scholar
  7. Huang, T. et al. Foxj1 is required for apical localization of ezrin in airway epithelial cells. J. Cell Sci. 116, 4935–4945 (2003).
    Article CAS Google Scholar
  8. Gomperts, B.N., Gong-Cooper, X. & Hackett, B.P. Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J. Cell Sci. 117, 1329–1337 (2004).
    Article CAS Google Scholar
  9. Pan, J., You, Y., Huang, T. & Brody, S.L. RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J. Cell Sci. 120, 1868–1876 (2007).
    Article CAS Google Scholar
  10. Chen, J., Knowles, H.J., Hebert, J.L. & Hackett, B.P. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J. Clin. Invest. 102, 1077–1082 (1998).
    Article CAS Google Scholar
  11. Brody, S.L., Yan, X.H., Wuerffel, M.K., Song, S.K. & Shapiro, S.D. Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am. J. Respir. Cell Mol. Biol. 23, 45–51 (2000).
    Article CAS Google Scholar
  12. Hirokawa, N., Tanaka, Y., Okada, Y. & Takeda, S. Nodal flow and the generation of left-right asymmetry. Cell 125, 33–45 (2006).
    Article CAS Google Scholar
  13. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).
    Article CAS Google Scholar
  14. Takeda, S. et al. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J. Cell Biol. 145, 825–836 (1999).
    Article CAS Google Scholar
  15. Zhang, M., Bolfing, M.F., Knowles, H.J., Karnes, H. & Hackett, B.P. Foxj1 regulates asymmetric gene expression during left-right axis patterning in mice. Biochem. Biophys. Res. Commun. 324, 1413–1420 (2004).
    Article CAS Google Scholar
  16. Schweickert, A. et al. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17, 60–66 (2007).
    Article CAS Google Scholar
  17. Essner, J.J., Amack, J.D., Nyholm, M.K., Harris, E.B. & Yost, H.J. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247–1260 (2005).
    Article CAS Google Scholar
  18. Essner, J.J. et al. Conserved function for embryonic nodal cilia. Nature 418, 37–38 (2002).
    Article CAS Google Scholar
  19. Kramer-Zucker, A.G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005).
    Article CAS Google Scholar
  20. Pohl, B.S. & Knochel, W. Isolation and developmental expression of Xenopus FoxJ1 and FoxK1. Dev. Genes Evol. 214, 200–205 (2004).
    Article CAS Google Scholar
  21. Stubbs, J.L., Davidson, L., Keller, R. & Kintner, C. Radial intercalation of ciliated cells during Xenopus skin development. Development 133, 2507–2515 (2006).
    Article CAS Google Scholar
  22. Mitchell, B., Jacobs, R., Li, J., Chien, S. & Kintner, C. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447, 97–101 (2007).
    Article CAS Google Scholar
  23. Park, T.J., Haigo, S.L. & Wallingford, J.B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat. Genet. 38, 303–311 (2006).
    Article CAS Google Scholar
  24. You, Y. et al. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L650–L657 (2004).
    Article CAS Google Scholar
  25. Deblandre, G.A., Wettstein, D.A., Koyano-Nakagawa, N. & Kintner, C. A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126, 4715–4728 (1999).
    CAS PubMed Google Scholar
  26. Liu, Y., Pathak, N., Kramer-Zucker, A. & Drummond, I.A. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134, 1111–1122 (2007).
    Article CAS Google Scholar
  27. Ma, M. & Jiang, Y.J. Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet. 3, e18 (2007).
    Article Google Scholar
  28. Feistel, K. & Blum, M. Three types of cilia including a novel 9+4 axoneme on the notochordal plate of the rabbit embryo. Dev. Dyn. 235, 3348–3358 (2006).
    Article CAS Google Scholar
  29. Inglis, P.N., Boroevich, K.A. & Leroux, M.R. Piecing together a ciliome. Trends Genet. 22, 491–500 (2006).
    Article CAS Google Scholar
  30. Sapiro, R. et al. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol. Cell. Biol. 22, 6298–6305 (2002).
    Article CAS Google Scholar
  31. Tanaka, H. et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol. Cell. Biol. 24, 7958–7964 (2004).
    Article CAS Google Scholar
  32. Supp, D.M., Potter, S.S. & Brueckner, M. Molecular motors: the driving force behind mammalian left-right development. Trends Cell Biol. 10, 41–45 (2000).
    Article CAS Google Scholar
  33. McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 61–73 (2003).
    Article CAS Google Scholar
  34. Marshall, W.F. & Kintner, C. Cilia orientation and the fluid mechanics of development. Curr. Opin. Cell Biol. 20, 48–52 (2008).
    Article CAS Google Scholar
  35. Sive, H., Grainger, R.M. & Harland, R.M. The Early Development of Xenopus laevis: A Laboratory Manual (Cold Spring Harbor Press, Plainview, New York, 1998).
  36. Wettstein, D.A., Turner, D.L. & Kintner, C. The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124, 693–702 (1997).
    CAS PubMed Google Scholar
  37. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).
    Article CAS Google Scholar
  38. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).
    Article CAS Google Scholar
  39. Harland, R.M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685–695 (1991).
    Article CAS Google Scholar
  40. Davidson, L.A., Hoffstrom, B.G., Keller, R. & DeSimone, D.W. Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin alpha(5)beta(1), fibronectin, and tissue geometry. Dev. Biol. 242, 109–129 (2002).
    Article CAS Google Scholar
  41. Zapala, M.A., Lockhart, D.J., Pankratz, D.G., Garcia, A.J. & Barlow, C. Software and methods for oligonucleotide and cDNA array data analysis. Genome Biol. 3 SOFTWARE0001 (2002).
  42. Wilson, P.A., Oster, G. & Keller, R. Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development 105, 155–166 (1989).
    CAS PubMed Google Scholar
  43. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J. & Tsai, H.J. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30–40 (2003).
    Article CAS Google Scholar
  44. Thisse, C., Thisse, B., Schilling, T.F. & Postlethwait, J.H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215 (1993).
    CAS PubMed Google Scholar

Download references