Evidence for APOBEC3B mutagenesis in multiple human cancers (original) (raw)
Stephens, P. et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat. Genet.37, 590–592 (2005). ArticleCAS Google Scholar
Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature446, 153–158 (2007). ArticleCAS Google Scholar
Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science330, 228–231 (2010). ArticleCAS Google Scholar
Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006). Article Google Scholar
Kumar, A. et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc. Natl. Acad. Sci. USA108, 17087–17092 (2011). ArticleCAS Google Scholar
Parsons, D.W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science331, 435–439 (2011). ArticleCAS Google Scholar
Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature470, 214–220 (2011). ArticleCAS Google Scholar
Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science333, 1157–1160 (2011). ArticleCAS Google Scholar
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell149, 979–993 (2012). ArticleCAS Google Scholar
Stephens, P.J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature486, 400–404 (2012). ArticleCAS Google Scholar
Makridakis, N.M. & Reichardt, J.K. Translesion DNA polymerases and cancer. Front. Genet.3, 174 (2012). ArticleCAS Google Scholar
Roberts, S.A. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell46, 424–435 (2012). ArticleCAS Google Scholar
Drier, Y. et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res.23, 228–235 (2013). ArticleCAS Google Scholar
Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell10, 1247–1253 (2002). ArticleCAS Google Scholar
Di Noia, J.M. & Neuberger, M.S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem.76, 1–22 (2007). ArticleCAS Google Scholar
Longerich, S., Basu, U., Alt, F. & Storb, U. AID in somatic hypermutation and class switch recombination. Curr. Opin. Immunol.18, 164–174 (2006). ArticleCAS Google Scholar
Conticello, S.G. The AID/APOBEC family of nucleic acid mutators. Genome Biol.9, 229 (2008). Article Google Scholar
LaRue, R.S. et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol.83, 494–497 (2009). ArticleCAS Google Scholar
Malim, M.H. APOBEC proteins and intrinsic resistance to HIV-1 infection. Phil. Trans. R. Soc. Lond. B364, 675–687 (2009). ArticleCAS Google Scholar
Harris, R.S., Hultquist, J.F. & Evans, D.T. The restriction factors of human immunodeficiency virus. J. Biol. Chem.287, 40875–40883 (2012). ArticleCAS Google Scholar
Blanc, V. & Davidson, N.O. C-to-U RNA editing: mechanisms leading to genetic diversity. J. Biol. Chem.278, 1395–1398 (2003). ArticleCAS Google Scholar
Bishop, K.N., Holmes, R.K., Sheehy, A.M. & Malim, M.H. APOBEC-mediated editing of viral RNA. Science305, 645 (2004). ArticleCAS Google Scholar
Petit, V. et al. Murine APOBEC1 is a powerful mutator of retroviral and cellular RNA in vitro and in vivo. J. Mol. Biol.385, 65–78 (2009). ArticleCAS Google Scholar
Ikeda, T. et al. Intrinsic restriction activity by apolipoprotein B mRNA editing enzyme APOBEC1 against the mobility of autonomous retrotransposons. Nucleic Acids Res.39, 5538–5554 (2011). ArticleCAS Google Scholar
Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature418, 99–103 (2002). ArticleCAS Google Scholar
Petersen-Mahrt, S.K. & Neuberger, M.S. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J. Biol. Chem.278, 19583–19586 (2003). ArticleCAS Google Scholar
Pham, P., Bransteitter, R., Petruska, J. & Goodman, M.F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature424, 103–107 (2003). ArticleCAS Google Scholar
Chelico, L., Pham, P., Calabrese, P. & Goodman, M.F. APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA. Nat. Struct. Mol. Biol.13, 392–399 (2006). ArticleCAS Google Scholar
Hultquist, J.F. et al. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J. Virol.85, 11220–11234 (2011). ArticleCAS Google Scholar
Robbiani, D.F. & Nussenzweig, M.C. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Annu. Rev. Pathol.8, 79–103 (2013). ArticleCAS Google Scholar
Okazaki, I.M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med.197, 1173–1181 (2003). ArticleCAS Google Scholar
Yamanaka, S. et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc. Natl. Acad. Sci. USA92, 8483–8487 (1995). ArticleCAS Google Scholar
Burns, M.B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature494, 366–370 (2013). ArticleCAS Google Scholar
Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics79, 285–296 (2002). ArticleCAS Google Scholar
Refsland, E.W. et al. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res.38, 4274–4284 (2010). ArticleCAS Google Scholar
Koning, F.A. et al. Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J. Virol.83, 9474–9485 (2009). ArticleCAS Google Scholar
Lackey, L. et al. APOBEC3B and AID have similar nuclear import mechanisms. J. Mol. Biol.419, 301–314 (2012). ArticleCAS Google Scholar
Kohli, R.M. et al. Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J. Biol. Chem.285, 40956–40964 (2010). ArticleCAS Google Scholar
Wang, M., Rada, C. & Neuberger, M.S. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. J. Exp. Med.207, 141–153 (2010). ArticleCAS Google Scholar
Albin, J.S. & Harris, R.S. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev. Mol. Med.12, e4 (2010). Article Google Scholar
Palles, C. et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet.45, 136–144 (2013). ArticleCAS Google Scholar
Vogelstein, B. et al. Cancer genome landscapes. Science339, 1546–1558 (2013). ArticleCAS Google Scholar
Berger, M.F. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature485, 502–506 (2012). ArticleCAS Google Scholar
Fujino, T., Navaratnam, N. & Scott, J. Human apolipoprotein B RNA editing deaminase gene (APOBEC1). Genomics47, 266–275 (1998). ArticleCAS Google Scholar
Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem.274, 18470–18476 (1999). ArticleCAS Google Scholar
Stenglein, M.D., Burns, M.B., Li, M., Lengyel, J. & Harris, R.S. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat. Struct. Mol. Biol.17, 222–229 (2010). ArticleCAS Google Scholar
Sato, Y. et al. Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy. J. Biol. Chem.285, 7111–7118 (2010). ArticleCAS Google Scholar
Rogozin, I.B., Basu, M.K., Jordan, I.K., Pavlov, Y.I. & Koonin, E.V. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle4, 1281–1285 (2005). ArticleCAS Google Scholar
Rada, C., Jarvis, J.M. & Milstein, C. AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization. Proc. Natl. Acad. Sci. USA99, 7003–7008 (2002). ArticleCAS Google Scholar
Land, A.M. et al. Endogenous APOBEC3A DNA cytosine deaminase is cytoplasmic and non-genotoxic. J. Biol. Chem.288, 17253–17260 (2013). ArticleCAS Google Scholar