Improved genome inference in the MHC using a population reference graph (original) (raw)

References

  1. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
    Article Google Scholar
  2. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).
    Article CAS Google Scholar
  3. Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011).
    Article CAS Google Scholar
  4. Zook, J.M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251 (2014).
    Article CAS Google Scholar
  5. Horton, R. et al. Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 60, 1–18 (2008).
    Article CAS Google Scholar
  6. Jiang, W. et al. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res. 22, 1845–1854 (2012).
    Article CAS Google Scholar
  7. Trask, B.J. et al. Large multi-chromosomal duplications encompass many members of the olfactory receptor gene family in the human genome. Hum. Mol. Genet. 7, 2007–2020 (1998).
    Article CAS Google Scholar
  8. Steinberg, K.M. et al. Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nat. Genet. 44, 872–880 (2012).
    Article CAS Google Scholar
  9. Boettger, L.M., Handsaker, R.E., Zody, M.C. & McCarroll, S.A. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat. Genet. 44, 881–885 (2012).
    Article CAS Google Scholar
  10. Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).
    Article CAS Google Scholar
  11. Lupski, J.R. & Stankiewicz, P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet. 1, e49 (2005).
    Article Google Scholar
  12. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
  13. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).
  14. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
  15. Lee, C., Grasso, C. & Sharlow, M.F. Multiple sequence alignment using partial order graphs. Bioinformatics 18, 452–464 (2002).
    Article CAS Google Scholar
  16. Raphael, B., Zhi, D., Tang, H. & Pevzner, P. A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Res. 14, 2336–2346 (2004).
    Article CAS Google Scholar
  17. Paten, B. et al. Cactus graphs for genome comparisons. J. Comput. Biol. 18, 469–481 (2011).
    Article CAS Google Scholar
  18. Paten, B., Novak, A. & Haussler, D. Mapping to a reference genome structure. ArXiv http://arxiv.org/abs/1404.5010 (2014).
  19. Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014).
    Article CAS Google Scholar
  20. Garrison, E.P. & Marth, G. Haplotype-based variant detection from short-read sequencing. ArXiv http://arxiv.org/abs/1207.3907 (2012).
  21. Huang, L., Popic, V. & Batzoglou, S. Short read alignment with populations of genomes. Bioinformatics 29, i361–i370 (2013).
    Article CAS Google Scholar
  22. Schneeberger, K. et al. Simultaneous alignment of short reads against multiple genomes. Genome Biol. 10, R98 (2009).
    Article Google Scholar
  23. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44, 226–232 (2012).
    Article CAS Google Scholar
  24. Katoh, K. & Frith, M.C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).
    Article CAS Google Scholar
  25. Bradley, R.K. et al. Fast statistical alignment. PLoS Comput. Biol. 5, e1000392 (2009).
    Article Google Scholar
  26. Lefranc, M.P. et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 37, D1006–D1012 (2009).
    Article CAS Google Scholar
  27. Li, H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28, 1838–1844 (2012).
    Article CAS Google Scholar
  28. Weisenfeld, N.I. et al. Comprehensive variation discovery in single human genomes. Nat. Genet. 46, 1350–1355 (2014).
    Article CAS Google Scholar
  29. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).
    Article CAS Google Scholar
  30. Li, Y., Sidore, C., Kang, H.M., Boehnke, M. & Abecasis, G.R. Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. 21, 940–951 (2011).
    Article CAS Google Scholar
  31. Holdsworth, R. et al. The HLA dictionary 2008: a summary of HLA-A, -B, -C, -DRB1/3/4/5, and -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR, and -DQ antigens. Tissue Antigens 73, 95–170 (2009).
    Article CAS Google Scholar
  32. Flicek, P. et al. Ensembl 2013. Nucleic Acids Res. 41, D48–D55 (2013).
    Article CAS Google Scholar
  33. Spraggs, C.F., Parham, L.R., Hunt, C.M. & Dollery, C.T. Lapatinib-induced liver injury characterized by class II HLA and Gilbert's syndrome genotypes. Clin. Pharmacol. Ther. 91, 647–652 (2012).
    Article CAS Google Scholar

Download references