Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates (original) (raw)
Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvák, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell91, 501–510 (1997). ArticleCAS Google Scholar
Mates, L., Izsvak, Z. & Ivics, Z. Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol.8 (Suppl 1), S1 (2007). Article Google Scholar
Ivics, Z. & Izsvak, Z. Transposons for gene therapy! Curr. Gene Ther.6, 593–607 (2006). ArticleCAS Google Scholar
Geurts, A.M. et al. Gene transfer into genomes of human cells by the Sleeping Beauty transposon system. Mol. Ther.8, 108–117 (2003). ArticleCAS Google Scholar
Zayed, H., Izsvak, Z., Walisko, O. & Ivics, Z. Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol. Ther.9, 292–304 (2004). ArticleCAS Google Scholar
Baus, J., Liu, L., Heggestad, A.D., Sanz, S. & Fletcher, B.S. Hyperactive transposase mutants of the Sleeping Beauty transposon. Mol. Ther.12, 1148–1156 (2005). ArticleCAS Google Scholar
Yant, S.R., Park, J., Huang, Y., Mikkelsen, J.G. & Kay, M.A. Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Mol. Cell. Biol.24, 9239–9247 (2004). ArticleCAS Google Scholar
Cadinanos, J. & Bradley, A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res.35, e87 (2007). Article Google Scholar
Wilson, M.H., Coates, C.J. & George, A.L. Jr. PiggyBac Transposon-mediated Gene Transfer in Human Cells. Mol. Ther.15, 139–145 (2007). ArticleCAS Google Scholar
Wang, W. et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA105, 9290–9295 (2008). ArticleCAS Google Scholar
Izsvak, Z. & Ivics, Z. Sleeping beauty transposition: biology and applications for molecular therapy. Mol. Ther.9, 147–156 (2004). ArticleCAS Google Scholar
Liu, G., Aronovich, E.L., Cui, Z., Whitley, C.B. & Hackett, P.B. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J. Gene Med.6, 574–583 (2004). ArticleCAS Google Scholar
Mingozzi, F. et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J. Clin. Invest.111, 1347–1356 (2003). ArticleCAS Google Scholar
Conner, D.A. Transgenic mouse production by zygote injection. Curr. Protoc. Mol. Biol.Chapter 23, Unit 23.9 (2004). PubMed Google Scholar
Dupuy, A.J. et al. Mammalian germ-line transgenesis by transposition. Proc. Natl. Acad. Sci. USA99, 4495–4499 (2002). ArticleCAS Google Scholar
Horie, K. et al. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol. Cell. Biol.23, 9189–9207 (2003). ArticleCAS Google Scholar
Kitada, K. et al. Transposon-tagged mutagenesis in the rat. Nat. Methods4, 131–133 (2007). ArticleCAS Google Scholar
Lu, B. et al. Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system. Mamm. Genome18, 338–346 (2007). ArticleCAS Google Scholar
Dupuy, A.J., Fritz, S. & Largaespada, D.A. Transposition and gene disruption in the male germline of the mouse. Genesis30, 82–88 (2001). ArticleCAS Google Scholar
Yusa, K., Takeda, J. & Horie, K. Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Mol. Cell. Biol.24, 4004–4018 (2004). ArticleCAS Google Scholar
Geurts, A.M. et al. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet.2, e156 (2006). Article Google Scholar
Manno, C.S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med.12, 342–347 (2006). ArticleCAS Google Scholar
Hollis, R.P. et al. Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon. Exp. Hematol.34, 1333–1343 (2006). ArticleCAS Google Scholar
Conneally, E., Eaves, C.J. & Humphries, R.K. Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential. Blood91, 3487–3493 (1998). CASPubMed Google Scholar
Miyoshi, H., Smith, K.A., Mosier, D.E., Verma, I.M. & Torbett, B.E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science283, 682–686 (1999). ArticleCAS Google Scholar
Salmon, P. et al. High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood96, 3392–3398 (2000). CASPubMed Google Scholar
Follenzi, A., Ailles, L.E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet.25, 217–222 (2000). ArticleCAS Google Scholar
VandenDriessche, T. et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood100, 813–822 (2002). ArticleCAS Google Scholar
Zufferey, R., Donello, J.E., Trono, D. & Hope, T.J. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol.73, 2886–2892 (1999). CASPubMedPubMed Central Google Scholar
Piacibello, W. et al. Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Nonobese diabetic/severe combined immunodeficient. Blood100, 4391–4400 (2002). ArticleCAS Google Scholar
Bushman, F. et al. Genome-wide analysis of retroviral DNA integration. Nat. Rev. Microbiol.3, 848–858 (2005). ArticleCAS Google Scholar
Schroder, A.R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell110, 521–529 (2002). ArticleCAS Google Scholar
Liu, G. et al. Target-site preferences of Sleeping Beauty transposons. J. Mol. Biol.346, 161–173 (2005). ArticleCAS Google Scholar
Vigdal, T.J., Kaufman, C.D., Izsvák, Z., Voytas, D.F. & Ivics, Z. Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements. J. Mol. Biol.323, 441–452 (2002). ArticleCAS Google Scholar
Ivics, Z. et al. Targeted Sleeping Beauty transposition in human cells. Mol. Ther.15, 1137–1144 (2007). ArticleCAS Google Scholar
Yant, S.R., Huang, Y., Akache, B. & Kay, M.A. Site-directed transposon integration in human cells. Nucleic Acids Res.35, e50 (2007). Article Google Scholar
Walisko, O. et al. Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol. Ther.16, 359–369 (2008). ArticleCAS Google Scholar
Dalsgaard, T. et al. Shielding of sleeping beauty DNA transposon-delivered transgene cassettes by heterologous insulators in early embryonal cells. Mol. Ther.17, 121–130 (2009). ArticleCAS Google Scholar
Mikkelsen, J.G. et al. Helper-Independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol. Ther.8, 654–665 (2003). ArticleCAS Google Scholar
Ohlfest, J.R. et al. Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood105, 2691–2698 (2005). ArticleCAS Google Scholar
Yant, S.R. et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat. Genet.25, 35–41 (2000). ArticleCAS Google Scholar
Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA91, 10747–10751 (1994). ArticleCAS Google Scholar
Miao, C.H. et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol. Ther.1, 522–532 (2000). ArticleCAS Google Scholar
Ishikawa, F. et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood106, 1565–1573 (2005). ArticleCAS Google Scholar
Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2003). Google Scholar
Moore, J.C., Jin, H.M., Kuchner, O. & Arnold, F.H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J. Mol. Biol.272, 336–347 (1997). ArticleCAS Google Scholar