Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia (original) (raw)
References
Korinek, V. et al. Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol. Cell. Biol.18, 1248–1256 (1998). ArticleCASPubMedPubMed Central Google Scholar
Merrill, B.J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev.15, 1688–1705 (2001). ArticleCASPubMedPubMed Central Google Scholar
Merrill, B.J. et al. Tcf3: a transcriptional regulator of axis induction in the early embryo. Development131, 263–274 (2004). ArticleCASPubMed Google Scholar
Nguyen, H., Rendl, M. & Fuchs, E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell127, 171–183 (2006). ArticleCASPubMed Google Scholar
DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development126, 4557–4568 (1999). CASPubMed Google Scholar
Nowak, J.A., Polak, L., Pasolli, H.A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell3, 33–43 (2008). ArticleCASPubMedPubMed Central Google Scholar
Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104, 233–245 (2001). ArticleCASPubMed Google Scholar
Alonso, L. et al. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. J. Cell Biol.170, 559–570 (2005). ArticleCASPubMedPubMed Central Google Scholar
Niemann, C., Owens, D.M., Hulsken, J., Birchmeier, W. & Watt, F.M. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development129, 95–109 (2002). CASPubMed Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95, 605–614 (1998). ArticleCASPubMed Google Scholar
Van Mater, D., Kolligs, F.T., Dlugosz, A.A. & Fearon, E.R. Transient activation of beta-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev.17, 1219–1224 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lo Celso, C., Prowse, D.M. & Watt, F.M. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development131, 1787–1799 (2004). ArticleCASPubMed Google Scholar
Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature447, 316–320 (2007). ArticleCASPubMed Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545 (2001). ArticleCASPubMed Google Scholar
Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature452, 650–653 (2008). ArticleCASPubMed Google Scholar
Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. USA96, 8551–8556 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol.3, e331 (2005). PubMedPubMed Central Google Scholar
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet.19, 379–383 (1998). ArticleCASPubMed Google Scholar
Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H. & Young, R.A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev.22, 746–755 (2008). ArticleCASPubMedPubMed Central Google Scholar
Vauclair, S., Nicolas, M., Barrandon, Y. & Radtke, F. Notch1 is essential for postnatal hair follicle development and homeostasis. Dev. Biol.284, 184–193 (2005). ArticleCASPubMed Google Scholar
Fleming, H.E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell2, 274–283 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ye, X. et al. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol. Cell27, 183–196 (2007). ArticleCASPubMedPubMed Central Google Scholar
Almeida, M., Han, L., Bellido, T., Manolagas, S.C. & Kousteni, S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J. Biol. Chem.280, 41342–41351 (2005). ArticleCASPubMed Google Scholar
Essers, M.A.G. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J.23, 4802–4812 (2004). ArticleCASPubMedPubMed Central Google Scholar
Brack, A.S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science317, 807–810 (2007). ArticleCASPubMed Google Scholar
Liu, H. et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science317, 803–806 (2007). ArticleCASPubMed Google Scholar
van Genderen, C. et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev.8, 2691–2703 (1994). ArticleCASPubMed Google Scholar
Liu, T.X. et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat. Med.13, 78–83 (2007). ArticlePubMed Google Scholar
Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCASPubMed Google Scholar