Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1 (original) (raw)

References

  1. Hindorff, L.A., Junkins, H.A., Mehta, J.P. & Manolio, T.A. A catalog of published genome-wide association studies (accessed 16 February 2010). <http://www.genome.gov/gwastudies>.
  2. Hanna, M.G. Genetic neurological channelopathies. Nat. Clin. Pract. Neurol. 2, 252–263 (2006).
    Article CAS Google Scholar
  3. Nyholt, D.R. et al. A high-density association screen of 155 ion transport genes for involvement with common migraine. Hum. Mol. Genet. 17, 3318–3331 (2008).
    Article CAS Google Scholar
  4. Frankel, W.N. Genetics of complex neurological disease: challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet. 25, 361–367 (2009).
    Article CAS Google Scholar
  5. Stovner, L.J., Zwart, J.A., Hagen, K., Terwindt, G.M. & Pascual, J. Epidemiology of headache in Europe. Eur. J. Neurol. 13, 333–345 (2006).
    Article CAS Google Scholar
  6. Stovner, L. et al. The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 27, 193–210 (2007).
    Article Google Scholar
  7. International Headache Society. The international classification of headache disorders: 2nd edition. Cephalalgia 24, Suppl 1, 9–160 (2004).
  8. Goadsby, P.J., Lipton, R.B. & Ferrari, M.D. Migraine–current understanding and treatment. N. Engl. J. Med. 346, 257–270 (2002).
    Article CAS Google Scholar
  9. Lauritzen, M. Pathophysiology of the migraine aura. The spreading depression theory. Brain 117, 199–210 (1994).
    Article Google Scholar
  10. Hadjikhani, N. et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl. Acad. Sci. USA 98, 4687–4692 (2001).
    Article CAS Google Scholar
  11. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
    Article CAS Google Scholar
  12. Nyholt, D.R. et al. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74, 765–769 (2004).
    Article CAS Google Scholar
  13. Risch, N.J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).
    Article CAS Google Scholar
  14. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 (2009).
    Article CAS Google Scholar
  15. Hu, V.W. et al. Gene expression profiling differentiates autism case-controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Res. 2, 78–97 (2009).
    Article Google Scholar
  16. Nishimura, Y. et al. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum. Mol. Genet. 16, 1682–1698 (2007).
    Article CAS Google Scholar
  17. Martin, M.V. et al. Exon expression in lymphoblastoid cell lines from subjects with schizophrenia before and after glucose deprivation. BMC Med. Genomics 2, 62 (2009).
    Article Google Scholar
  18. Emdad, L. et al. Astrocyte elevated gene-1 (AEG-1) functions as an oncogene and regulates angiogenesis. Proc. Natl. Acad. Sci. USA 106, 21300–21305 (2009).
    Article CAS Google Scholar
  19. Kang, D.C. et al. Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene 353, 8–15 (2005).
    Article CAS Google Scholar
  20. Noch, E. & Khalili, K. Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol. Ther. 8, 1791–1797 (2009).
    Article CAS Google Scholar
  21. Boycott, H.E., Wilkinson, J.A., Boyle, J.P., Pearson, H.A. & Peers, C. Differential involvement of TNF alpha in hypoxic suppression of astrocyte glutamate transporters. Glia 56, 998–1004 (2008).
    Article Google Scholar
  22. Dallas, M. et al. Hypoxia suppresses glutamate transport in astrocytes. J. Neurosci. 27, 3946–3955 (2007).
    Article CAS Google Scholar
  23. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).
    Article CAS Google Scholar
  24. Goadsby, P.J., Charbit, A.R., Andreou, A.P., Akerman, S. & Holland, P.R. Neurobiology of migraine. Neurosci. 161, 327–341 (2009).
    Article CAS Google Scholar
  25. Burstein, R., Cutrer, M.F. & Yarnitsky, D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123, 1703–1709 (2000).
    Article Google Scholar
  26. Ophoff, R.A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 (1996).
    Article CAS Google Scholar
  27. De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33, 192–196 (2003).
    Article CAS Google Scholar
  28. Dichgans, M. et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366, 371–377 (2005).
    Article CAS Google Scholar
  29. Pietrobon, D. Familial hemiplegic migraine. Neurotherapeutics 4, 274–284 (2007).
    Article CAS Google Scholar
  30. de Vries, B., Frants, R.R., Ferrari, M.D. & van den Maagdenberg, A.M. Molecular genetics of migraine. Hum. Genet. 126, 115–132 (2009).
    Article Google Scholar
  31. Tottene, A. et al. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 61, 762–773 (2009).
    Article CAS Google Scholar
  32. de Vries, B. et al. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch. Neurol. 66, 97–101 (2009).
    Article Google Scholar
  33. Jen, J.C., Wan, J., Palos, T.P., Howard, B.D. & Baloh, R.W. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65, 529–534 (2005).
    Article CAS Google Scholar
  34. Teo, Y.Y. et al. A genotype calling algorithm for the Illumina BeadArray platform. Bioinformatics 23, 2741–2746 (2007).
    Article CAS Google Scholar
  35. Stranger, B.E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).
    Article CAS Google Scholar
  36. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
    Article CAS Google Scholar
  37. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131–138 (2003).
    Article CAS Google Scholar
  38. Grant, S.F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).
    Article CAS Google Scholar
  39. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
    Article Google Scholar

Download references

Acknowledgements

We wish to thank all individuals in the respective cohorts for their generous participation. This work was supported by the Wellcome Trust (grant number WT089062) and, among others, by the Academy of Finland (200923 to AP, 00213 to M.W.); the Helsinki University Central Hospital (to M. Kallela., M.F., V. Artto and S.V.); the Academy of Finland Center of Excellence for Complex Disease Genetics; the EuroHead project (LSM-CT-2004-504837); the Helsinki Biomedical Graduate School (to V. Anttila, P.T.-K.); the Finnish Cultural Foundation (to V. Anttila); the Finnish Neurology Foundation, Biomedicum Helsinki Foundation (to V. Anttila, P.T.-K. and V. Artto); the Cambridge Biomedical Research Centre (to S.C.); the Australian National Health and Medical Research Council Fellowship (339462 and 613674) and the Australian Research Council Future Fellowship (FT0991022) schemes (to D.R.N.); the German Federal Ministry of Education and Research (BMBF) (grant 01GS08121 to M. Dichgans, along with support to H.E.W. in the context of the German National Genome Research Network (NGFN-2 and NGFN-plus) for the Heinz Nixdorf Recall study, and to C.K. (EMINet - 01GS08120) for the National Genome Research Network (Germany; NGFN-1 and NGFN-Plus)); the Center for Molecular Medicine Cologne (to C.K.); the Heinz Nixdorf Foundation for the Heinz Nixdorf Recall study, Deutsche Forschungsgemeinschaft (DFG; to C.K. and H.G.); the Netherlands Organization for the Health Research and Development (ZonMw) no. 90700217 (to G.M.T.) and to the Rotterdam Study (RIDE1 and RIDE2); the Netherlands Organisation for Scientific Research (NWO) VICI (918.56.602) and Spinoza (2009) grants (to M.D.F.); and the Center for Medical Systems Biology (CMSB) established by the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research (NGI/NWO), project no. 050-060-409 (to C.M.v.D., R.R.F., M.D.F. and A.M.J.M.v.d.M.) and project nos. 050-060-810 and 175.010.2005.011, 911-03-012 (to the Rotterdam Study). We thank the Health 2000 study for providing Finnish control genotypes. The Broad Institute Center for Genotyping and Analysis is supported by a grant from the National Center for Research Resources (US). The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research and by the State of Bavaria and is supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII) and the Municipality of Rotterdam. We wish to thank S. Hunt, R. Gwillian, P. Whittaker, S. Potter and A. Tashakkori-Ghanbarian, as well as P. Marin-Garcia, for their invaluable help with this study. Finally, we wish to collectively thank everyone who has contributed to the collection, genotyping and analysis of the individual cohorts.

Author information

Author notes

  1. Leena Peltonen: Deceased.

Authors and Affiliations

  1. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
    Verneri Anttila, M Stella Calafato, Antigone S Dimas, Michael Inouye, Kirsi Alakurtti, Eija Hämäläinen, Jeffrey Barrett, Leena Peltonen & Aarno Palotie
  2. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
    Verneri Anttila, Kirsi Alakurtti, Mari A Kaunisto, Eija Hämäläinen, Jaakko Kaprio, Leena Peltonen, Maija Wessman & Aarno Palotie
  3. Department of Population Genomics, deCODE genetics, Reykjavik, Iceland
    Hreinn Stefansson, Stacy Steinberg, Asgeir Björnsson & Kari Stefansson
  4. Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
    Mikko Kallela, Ville Artto, Salli Vepsäläinen & Markus Färkkilä
  5. Institute of Human Genetics, University of Cologne, Cologne, Germany
    Unda Todt, Ingrid Goebel, Guntram Borck & Christian Kubisch
  6. Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Unda Todt, Ingrid Goebel, Guntram Borck & Christian Kubisch
  7. Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
    Gisela M Terwindt, Anine H Stam, Michel D Ferrari & Arn M J M van den Maagdenberg
  8. National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
    M Stella Calafato
  9. Neurogenetics Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
    Dale R Nyholt
  10. Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK
    Antigone S Dimas
  11. Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
    Antigone S Dimas & Emmanouil T Dermitzakis
  12. Department of Neurology, Klinikum Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany
    Tobias Freilinger & Martin Dichgans
  13. Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
    Tobias Freilinger & Martin Dichgans
  14. Max Planck Institute of Psychiatry, Munich, Germany
    Bertram Müller-Myhsok, Christiane Wolf & Susanne Lucae
  15. Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
    Michael Inouye, Boukje de Vries, Claudia M Weller, Arn M J M van den Maagdenberg & Rune R Frants
  16. Folkhälsan Research Center, Helsinki, Finland
    Mari A Kaunisto, Johan G Eriksson & Maija Wessman
  17. Kiel Pain and Headache Center, Kiel, Germany
    Axel Heinze, Katja Heinze-Kuhn & Hartmut Göbel
  18. Department of Neurology, Landspítali University Hospital, Reykjavik, Iceland
    Gretar Gudmundsson
  19. Department of Neurology, Glostrup Hospital and the Danish Headache Center, Glostrup, Denmark
    Malene Kirchmann, Anne Hauge & Jes Olesen
  20. Research Institute of Biological Psychiatry, University of Copenhagen, Roskilde, Denmark
    Thomas Werge
  21. Department of Neurology and Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences, Headache Research Unit, Liège University, Liège, Belgium
    Jean Schoenen
  22. Department of General Practice, Helsinki University Central Hospital, Helsinki, Finland
    Johan G Eriksson
  23. Vaasa Central Hospital, Vaasa, Finland
    Johan G Eriksson
  24. National Institute for Health and Welfare, Helsinki, Finland
    Johan G Eriksson & Jaakko Kaprio
  25. Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Knut Hagen, Lars Stovner & John-Anker Zwart
  26. Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
    H-Erich Wichmann
  27. Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
    H-Erich Wichmann
  28. Klinikum Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany
    H-Erich Wichmann
  29. Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
    Thomas Meitinger
  30. Institute of Human Genetics, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
    Thomas Meitinger
  31. Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
    Michael Alexander
  32. Institute of Human Genetics, University of Bonn, Bonn, Germany
    Michael Alexander
  33. Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
    Susanne Moebus
  34. Department of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany
    Stefan Schreiber
  35. Department of Internal Medicine I, Christian Albrechts University, Kiel, Germany
    Stefan Schreiber
  36. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
    Yurii S Aulchenko, Monique M B Breteler, Albert Hofman & Cornelia M van Duijn
  37. Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
    Andre G Uitterlinden
  38. Research Program in Molecular Medicine, University of Helsinki, Helsinki, Finland
    Päivi Tikka-Kleemola
  39. Drug Discovery, GlaxoSmithKline Research and Development, Verona, Italy
    Federica Tozzi & Pierandrea Muglia
  40. Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
    Pierandrea Muglia
  41. Department of Public Health, University of Helsinki, Helsinki, Finland
    Jaakko Kaprio
  42. The Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
    Leena Peltonen, Mark Daly & Aarno Palotie
  43. Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
    John-Anker Zwart
  44. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
    Christian Kubisch
  45. Institute of Human Genetics, University of Ulm,
    Christian Kubisch
  46. Department of Medical Genetics, University of Helsinki, Helsinki, Finland
    Aarno Palotie
  47. Department of Medical Genetics, Helsinki University Central Hospital, Helsinki, Finland
    Aarno Palotie

Consortia

the International Headache Genetics Consortium

Contributions

All authors contributed to the current version of the paper.

Corresponding authors

Correspondence toVerneri Anttila or Aarno Palotie.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

the International Headache Genetics Consortium. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1.Nat Genet 42, 869–873 (2010). https://doi.org/10.1038/ng.652

Download citation