miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development (original) (raw)
Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev.20, 515–524 (2006). ArticleCASPubMed Google Scholar
Zhao, Y. & Srivastava, D. A developmental view of microRNA function. Trends Biochem. Sci.32, 189–197 (2007). ArticleCASPubMed Google Scholar
Smibert, P. & Lai, E.C. Lessons from microRNA mutants in worms, flies and mice. Cell Cycle7, 2500–2508 (2008). ArticleCASPubMed Google Scholar
Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA102, 16426–16431 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wayman, G.A. et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl. Acad. Sci. USA105, 9093–9098 (2008). ArticleCASPubMedPubMed Central Google Scholar
Impey, S. et al. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol. Cell. Neurosci.43, 146–156 (2010). ArticleCASPubMed Google Scholar
Kawashima, H. et al. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience165, 1301–1311 (2010). ArticleCASPubMed Google Scholar
Shaked, I. et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity31, 965–973 (2009). ArticleCASPubMed Google Scholar
Howlin, J., McBryan, J. & Martin, F. Pubertal mammary gland development: Insights from mouse models. J. Mammary Gland Biol. Neoplasia11, 283–297 (2006). ArticlePubMed Google Scholar
Richert, M.M. et al. An atlas of mouse mammary gland development. J. Mammary Gland Biol. Neoplasia5, 227–241 (2000). ArticleCASPubMed Google Scholar
Hennighausen, L. & Robinson, G.W. Signaling pathways in mammary gland development. Dev. Cell1, 467–475 (2001). ArticleCASPubMed Google Scholar
Watson, C.J. & Khaled, W.T. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development135, 995–1003 (2008). ArticleCASPubMed Google Scholar
Hennighausen, L. & Robinson, G.W. Information networks in the mammary gland. Nat. Rev. Mol. Cell Biol.6, 715–725 (2005). ArticleCASPubMed Google Scholar
Parmar, H. & Cunha, G.R. Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocr. Relat. Cancer11, 437–458 (2004). ArticleCASPubMed Google Scholar
Neville, M.C., Medina, D., Monks, J. & Hovey, R.C. The mammary fat pad. J. Mammary Gland Biol. Neoplasia3, 109–116 (1998). ArticleCASPubMed Google Scholar
Remenyi, J. et al. Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem. J.428, 281–291 (2010). ArticleCASPubMed Google Scholar
Mailleux, A.A., Overholtzer, M. & Brugge, J.S. Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell Cycle7, 57–62 (2008). ArticleCASPubMed Google Scholar
Fiedler, S.D., Carletti, M.Z., Hong, X. & Christenson, L.K. Hormonal regulation of microRNA expression in periovulatory mouse mural granulosa cells. Biol. Reprod.79, 1030–1037 (2008). ArticleCASPubMedPubMed Central Google Scholar
Silberstein, G.B., Strickland, P., Coleman, S. & Daniel, C.W. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J. Cell Biol.110, 2209–2219 (1990). ArticleCASPubMed Google Scholar
Daniel, C.W., Robinson, S. & Silberstein, G.B. The role of TGF-beta in patterning and growth of the mammary ductal tree. J. Mammary Gland Biol. Neoplasia1, 331–341 (1996). ArticleCASPubMed Google Scholar
Wiseman, B.S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol.162, 1123–1133 (2003). ArticleCASPubMedPubMed Central Google Scholar
Robinson, S.D. et al. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development113, 867–878 (1991). CASPubMed Google Scholar
Kang, J.S., Liu, C. & Derynck, R. New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol.19, 385–394 (2009). ArticleCASPubMed Google Scholar
Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev.14, 163–176 (2000). PubMedPubMed Central Google Scholar
Wilson, T.J., Nannuru, K.C. & Singh, R.K. Cathepsin G-mediated activation of pro-matrix metalloproteinase 9 at the tumor-bone interface promotes transforming growth factor-beta signaling and bone destruction. Mol. Cancer Res.7, 1224–1233 (2009). ArticleCASPubMed Google Scholar
Okamoto, T. et al. Transforming growth factor-beta 1 induces matrix metalloproteinase-9 expression in human meningeal cells via ERK and Smad pathways. Biochem. Biophys. Res. Commun.383, 475–479 (2009). ArticleCASPubMed Google Scholar
Sinpitaksakul, S.N., Pimkhaokham, A., Sanchavanakit, N. & Pavasant, P. TGF-beta 1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem. Biophys. Res. Commun.371, 713–718 (2008). ArticleCASPubMed Google Scholar
Seomun, Y., Kim, J.T. & Joo, C.K. MMP-14 mediated MMP-9 expression is involved in TGF-beta 1-induced keratinocyte migration. J. Cell. Biochem.104, 934–941 (2008). ArticleCASPubMed Google Scholar
Chou, Y.T., Wang, H., Chen, Y., Danielpour, D. & Yang, Y.C. Cited2 modulates TGF-beta-mediated upregulation of MMP9. Oncogene25, 5547–5560 (2006). ArticleCASPubMed Google Scholar
Konrad, L., Scheiber, J.A., Schwarz, L., Schrader, A.J. & Hofmann, R. TGF-beta1 and TGF-beta2 strongly enhance the secretion of plasminogen activator inhibitor-1 and matrix metalloproteinase-9 of the human prostate cancer cell line PC-3. Regul. Pept.155, 28–32 (2009). ArticleCASPubMed Google Scholar
Howlin, J. et al. CITED1 homozygous null mice display aberrant pubertal mammary ductal morphogenesis. Oncogene25, 1532–1542 (2006). ArticleCASPubMed Google Scholar
Luetteke, N.C. et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development126, 2739–2750 (1999). CASPubMed Google Scholar
Ciarloni, L., Mallepell, S. & Brisken, C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc. Natl. Acad. Sci. USA104, 5455–5460 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wiesen, J.F., Young, P., Werb, Z. & Cunha, G.R. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development126, 335–344 (1999). CASPubMed Google Scholar
Shioda, T. et al. Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc. Natl. Acad. Sci. USA95, 9785–9790 (1998). ArticleCASPubMedPubMed Central Google Scholar
Parsa, S. et al. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev. Biol.317, 121–131 (2008). ArticleCASPubMed Google Scholar
Lu, P., Ewald, A.J., Martin, G.R. & Werb, Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev. Biol.321, 77–87 (2008). ArticleCASPubMedPubMed Central Google Scholar
Roarty, K. & Serra, R. Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal outgrowth. Development134, 3929–3939 (2007). ArticleCASPubMed Google Scholar
Ibarra, I., Erlich, Y., Muthuswamy, S.K., Sachidanandam, R. & Hannon, G.J. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev.21, 3238–3243 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kong, W. et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol.28, 6773–6784 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, T., Haneda, S., Imakawa, K., Sakai, S. & Nagaoka, K. A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation77, 181–187 (2009). ArticleCASPubMed Google Scholar
Rasmussen, S.B., Young, L.J.T. & Smith, G.H. in Methods in Mammary Gland Biology and Breast Cancer Research. (eds. Ip, M.M. and Asch, B.B.) 75–86 (Kluwer Academic/Plenum, New York, 2000).
Young, L.J.T. in Methods in Mammary Gland Biology and Breast Cancer Research (eds. Ip, M.M. and Asch, B.B.) 67–74 (Kluwer Academic/Plenum, New York, 2000).
Sangai, T. et al. Hormonal stimulation increases the recruitment of bone marrow-derived myoepithelial cells and periductal fibroblasts into the mammary gland. Biochem. Biophys. Res. Commun.346, 1173–1180 (2006). ArticleCASPubMed Google Scholar