The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse (original) (raw)

References

  1. Tate, P.M. & Bird, A.P. Effects of DMA methylation on DMA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226–231 (1993).
    Article CAS Google Scholar
  2. Lewis, J.D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).
    Article CAS Google Scholar
  3. Meehan, R.R., Lewis, J.D. & Bird, A.P. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucl. Acids Res. 20, 5085–5092 (1992).
    Article CAS Google Scholar
  4. Nan, X., Meehan, R.R. & Bird, A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucl. Acids Res. 21, 4886–4892 (1993).
    Article CAS Google Scholar
  5. Nan, X., Tate, P., En, Li & Bird, A DNA methylation specifies chromosomal localization of MeCP2. Mol. CellBiol. 16, 414–421 (1996).
    CAS Google Scholar
  6. Quaderi, N.A. et al. Genetic and physical mapping of a gene encoding a methyl CpG binding protein, Mecp2, to the mouse X chromosome. Genomics 22, 648–651 (1994).
    Article CAS Google Scholar
  7. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).
    Article CAS Google Scholar
  8. Skarnes, W.C., Moss, J.E., Hurtley, S.M. & Beddington, R.S. R.S.P Capturing genes in coding membrane and secreted proteins important for mouse development.Proc. Natl. Acad. Sci. USA 92, 6592–6596 (1995).
    Article CAS Google Scholar
  9. Mountford, R. et al. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc. Natl. Acad. Sci. USA 91, 4303–4307 (1994).
    Article CAS Google Scholar
  10. Schwartzberg, P.L., Robertson, E.J. & Goff, S.R. Targeted gene disruption of the endogenous c-abl locus by homologous recombination with DNA encoding a selectable fusion protein. Proc. Natl. Acad. Sci. USA 87 3 210–3214 (1990).
    Article Google Scholar
  11. Jeannotte, L., Ruiz, J.C. & Robertson, E.J. Low level of Hox 1, 3 gene expression does not preclude the use of promoterless vectors to generate a targeted gene disruption. Mol. Cell Biol. 11, 5578–5585 (1991).
    Article CAS Google Scholar
  12. Robertson, E.J., In Teratocarcinomas and Embryonic Stem Cells, A Practical Approach, (ed Robertson, E.J.) 71–112 (IRL Press, Oxford, 1987).
    Google Scholar
  13. Rudnicki, M.A. & McBurney, M.W., Methods and Induction of Differentiation of Embryonal Carcinoma Cell Lines. In Teratocarcinomas and Embryonic Stem Cells, A Practical Approach, (ed. Robertson, E.J.) 19–49 (IRL Press, Oxford, 1987).
    Google Scholar
  14. Miller, O.J., Schnedl, W., Alien, J. & Erlanger, B.F. 5-methylcytosine localised in mammalian constitutive heterochromatin. Nature 251, 636–637 (1974).
    Article CAS Google Scholar
  15. Stein, R., Razin, A. & Cedar, H. In vitro methylation of the hamster adenine phosphorybosy transferase gene inhibits its expression in mouse L cells. Proc. Natl. Acad. Sci. USA 79, 4418–3422 (1982).
    Google Scholar
  16. Vardimon, L., Kressmann, A., Cedar, H., Maechler, M. & Doerfler, W. Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc. Natl. Acad. Sci. USA 79, 1073–1077 (1982).
    Article CAS Google Scholar
  17. Busslinger, M., Hurst, J. & Flavell, R.A. DNA methylation and the regulation of globin gene expression. Cell 34, 107–206 (1983).
    Article Google Scholar
  18. Simon, D. et al. Retroviral genomes methylated by mammalian but not bacterial methylase are non-infectious. Nature 304, 275–277 (1983).
    Article CAS Google Scholar
  19. Jang, S.K. & Wimmer, E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kd RNA-binding protein. Genes Dev. 4, 1560–1572 (1990).
    Article CAS Google Scholar
  20. Ure, J.M., Fiering, S. & Smith, A.G. A rapid and efficient method for freezing and recovering clones of embryonic stem cells. Trends Genet. 8, 6 (1992).
    Article CAS Google Scholar
  21. Herry, D.M., Connon, F. & Powell, R. Insert preparation by centrifugation through siliconized glass wool. Trends Genet. 6, 173 (1990).
    Article Google Scholar
  22. Feinberg, A.R. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267 (1984).
    Article CAS Google Scholar
  23. Sealey, P.G., Whittaker, P.A. & Southern, E.M. Removal of repeated sequences from hybridization probes. Nucl. Acids Res. 13, 1905–1922 (1985).
    Article CAS Google Scholar
  24. Ullrich, A. et al. Rat insulin genes: construction of plasmids containing the coding sequences. Science 196, 1313–1319 (1977).
    Article CAS Google Scholar
  25. Sambrook, J., Fritsch, E.F. & Maniatis, T., A Laboratory Manual 2nd ed.(Cold Spring Harbor Press, Cold Spring Harbor, NY, 1989).
  26. Smith, A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).
    Article CAS Google Scholar
  27. Whittingham, D.G. & Wales, R.G. Storage of two-cell mouse embryos in vitro. Aust. J. Biol. Sci. 22, 1065–1068 (1969).
    Article CAS Google Scholar
  28. Beddington, R.S.P. Morgenstern, J., Land, H. & Hogan, A. An in situ transgenic enzyme marker for the midgestation mouse embryo and the visualization of inner cell mass clones during early organogenesis. Development 106, 37–46 (1989).
    CAS Google Scholar

Download references