Mutation of the MXI1 gene in prostate cancer (original) (raw)
References
Dalla-Favera, R., Martirotti, S., Galio, R.C., Erickson, J. & Croce, C.M. Translocation and rearrangement of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science.219, 963–965 (1983). ArticleCAS Google Scholar
Schwab, M. et al. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroWastoma. Proc. natn. Acad. Sci. U.S.A.81, 4940–4944 (1984). ArticleCAS Google Scholar
Nau, M. et al. L-myc, a new _myc_-related gene amplified and expressed in human small cell lung cancer. Nature.318, 69–73 (1985). ArticleCAS Google Scholar
Adams, J.M. et al. The c-myc oncogene driven by Immunoglobulin enhancer induces lymphoid malignancy in transgenlc mice. Nature318, 533–538 (1985). ArticleCAS Google Scholar
Murre, C., McCaw, P.S. & Baltimore, D. A new DMA binding and dimerizatlon motif in immunoglobulin, enhancer binding, daughterless, MyoD, and myc proteins. Cell56, 777–783 (1989). ArticleCAS Google Scholar
Murrem, C. et al. Interactions between heterotogous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell58, 537–544 (1989). Article Google Scholar
Olson, E.N. MyoD family: a paradigm for development? Genes Dev.4, 1454–1461 (1990). ArticleCAS Google Scholar
Davis, R.L., Cheng, P.F., Lassar, A.B. & Weintraub, H., MyoD DNA binding domain contains a recognition code for muscle-specific gene expression. Cell60, 733–746 (1990). ArticleCAS Google Scholar
Lassar, A.B. et al. Functional activity of myogenic HLH protreins requires hetero-oligomerization with E12/E47-like proteins In vivo. Cell66, 305–315 (1991). ArticleCAS Google Scholar
Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science251, 761–766 (1991). ArticleCAS Google Scholar
Kato, G.J., Barrett, J., Villa-Garcia, M. & Dang, C. An amino terminal c-myc domain required for neoplastic transformation activates transcription. Molec. Cell. Biol.10, 5914–6920 (1990). ArticleCAS Google Scholar
Blackwood, E.M. & Eisenmann, R.N. Max: a helix-loop-helix-zipper protein that forms a sequence-specific DNA binding complex with myc. Science251, 1211–1217 (1991). ArticleCAS Google Scholar
Prendergast, G.C., Lawe, D. & Ziff, E.B. Association of myn, the murine homolog of max, with c-myc stimulates methylatton-sensitive DNA binding and ras cotransormation. Cell66, 395–407 (1991). Article Google Scholar
Ayer, D.E., Kretzner, L. & Elsenmann, R.N. Mad: a heteradimeric partner for Max that antagonizes myc transcriptlonal activity. Cell72, 211–222 (1993). ArticleCAS Google Scholar
Zervos, A., Gyuris, J. & Brent, R., Mxl1, a protein that specifically interacts with max to bind myc-max recognition sites. Cell72, 223–232 (1993). ArticleCAS Google Scholar
Smith, M.J., Charron-Prochownik, D.C. & Prochownik, E.V. The leucine zipper of c-myc is required for the full inhibition of erythroleukemia differentiation. Molec. Cell. Biol.10, 5333–5339 (1990). ArticleCAS Google Scholar
Dang, C.V. et al. Intracellular leucine zipper interactions suggest c-myc hetero-oligomerization. Molec. Cell. Biol.11, 954–962 (1991). ArticleCAS Google Scholar
Amati, B. et al. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interactions with Max. Nature359, 423–426 (1992). ArticleCAS Google Scholar
Kretzner, L., Blackwood, E.M. & Eisenman, R.N. Myc and Max proteins possess distinct transcriptional activities. Nature359, 426–429 (1992). ArticleCAS Google Scholar
Amati, B. et al. Oncogenic activity of the c-myc protein requires oligomerization with max. Cell72, 233–245 (1993). ArticleCAS Google Scholar
Amin, C., Wagner, A.J. & Hay, N. Sequence-specific transcriptional activation by Myc and repression by Max. Molec. Cell. Biol.13, 383–390 (1993). ArticleCAS Google Scholar
Gu, W., Chechova, K. & Dalla-Favera, R. Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Proc. natn. Acad. Sci. U.S.A.90, 2935 (1993). ArticleCAS Google Scholar
Lahoz, E.G., Xu, L., Schreiber, A. & DePinho, R. Suppression of Myc, but not Ela, transformation activity by Max-associated proteins, Mad and Mxi1. Proc. natn. Acad. Sci. U.S.A.91, 5503–5507 (1994). ArticleCAS Google Scholar
Edelhoff, S. et al. Mapping of two genes encoding members of a distinct subfamily of MAX interacting proteins: MAD to human chromosome 2 and mouse chromosome 6, and MXI1 to human chromosome 10 and mouse chromosome 19. Oncogene9, 665 (1994). CASPubMed Google Scholar
Shapiro, D.N. et al. Assignment of the human MAD and MXI1 genes to chromosomes 2p12–p13 and 10q24–q25. Genomics23, 282–285 (1994). ArticleCAS Google Scholar
Sreekantaiah, C., Baer, M.R., Sole, F., Preisier, H.F. & Sandberg, A.A. Translocation (2;7) (p13;q36) in a case of acute non-lymphocytic leukemia evolving from a myelodysplastic syndrome. Cancer Genet. Cytogenet.35, 199–204 (1988). ArticleCAS Google Scholar
Fleischman, E.W. et al. Chromsomal characteristics of malignant lymphoma. Hum. Genet.82, 343–348 (1989). ArticleCAS Google Scholar
Heisler, C.H., Phillip, P. & Hansen, M.M. B-cell chronic lymphocytic leukaemia: clonal chromosome abnormalities and prognosis In 89 cases. Eur. J. Haematol.43, 397–403 (1990). Article Google Scholar
Yoffe, G., Howard-eebles, P.N., Smith, G., Tucker, P.W., Buchanan, G.R. Childhood chronic lymphocytic leukemia with t (2;14) translocation. J. Pediatr.116, 114–117 (1990). ArticleCAS Google Scholar
Fults, D. & Pedone, C. Deletion mapping of the long arm of chromosome 10 In glioblastoma multiforme. Genes Chrom. Cancer.7, 173–177 (1993). ArticleCAS Google Scholar
Bird, M.L., Ueshima, Y., Rowley, J.D., Haren, J.M., Vardiman, J.W. Chromosome abnormalities In B cell chronic lymphocytic leukemia and their clinical correlations. Leukemia3, 182–191 (1989). CASPubMed Google Scholar
Atkin, N.B. & Baker, M.C. Chromosome study of five cancers in prostate. Hum. Genet.70, 359–364 (1985). ArticleCAS Google Scholar
Lundgren, R. et al. Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Genes Chrom. Cancer.4, 16–24 (1992). ArticleCAS Google Scholar
Brothman, A.R., Peehl, D.M., Patel, A.M. & McNeal, J.E. Frequency and pattern of karyotypic abnormalities in human prostatic cancer. Cancer Res.50, 3795–3803 (1990). CASPubMed Google Scholar
Arps, S. et al. Cytogenetic survey of 32 cancers of the prostate. Cancer Genet Cytogenet.66, 93–99 (1993). ArticleCAS Google Scholar
Levine, A.J. The tumor suppressor genes. Annu. Rev. Biochem.62, 623–651 (1993). ArticleCAS Google Scholar
Kalllo, O., Syrjanen, S., Tervahuauta, S. & Syrjanen, K. A simple method for isolation of DNA from formalin-fixed pafaffin-embedded samples for PCR. J. Virol. Meth.35, 39–47 (1991). Article Google Scholar
Padgett, R.A., Grabowski, P.J., Konaraka, M.M., Seiber, S. & Sharp, P.A. Splicing of messenger RNA precursors. Annu. Rev. Biochem.55, 1119–1150 (1986). ArticleCAS Google Scholar
Kazazian, H.H. & Boehm, C.D. Molecular basis and prenatal diagnosis of β-thalassemia. Blood.72, 1107–1116 (1988). CASPubMed Google Scholar
Saiki, R.K. et al. Primer-directed enzymatic amplifications of DNA with a thermostable DNA polymerase. Science230, 487–491 (1988). Article Google Scholar
Prochownik, E.V. & Van Antwerp, M.E. Differential patterns of DNA binding by myc and max proteins. Proc. natn. Acad. Sci. U.S.A.90, 960–964 (1993). ArticleCAS Google Scholar
Epstein, I. in Prostate Biopsy Interpretation. Biopsy Interpretation Series. (ed. Silverberg, S.G ) 39–129 (Raven Press, New York, 1989). Google Scholar
Sidransky, D. et al. Clonal expansion of p53 mutant cells in association with brain tumor progression. Nature355, 646–847 (1992). Article Google Scholar
Marshall, R. et al. Rearrangement and expression of p53 in the chronic phase and blast crisis of chronic myetogenous leukemia. Blood75, 180–189 (1990). Google Scholar
Nakai, H., Misawa, S., Toguchida, J., Yandell, D.W. & Ishizaki, K. Frequent p53 gene mutations in blast crisis of chronic myetogenous leukemia, especially In myetoid crisis harboring loss of chromsome 17p. Cancer Res.52, 6588–6593 (1992). CASPubMed Google Scholar
Baker, S.J. et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res.50, 7717–7722 (1990). CAS Google Scholar
Frankel, R.H., Bayona, W., Koslow, M. & Newcomb, E.W. p53 mutations in human malingnant glomas: comparison of loss of heterzygosity with mutation frequency. Cancer Res.52, 1427–1433 (1992). CASPubMed Google Scholar
Brennan, T.J. & Olson, E.N. Myogenin resides In the nucleus and acquires high affinity for a conserved enhancer element on heterodemerizatton. Genes Dev.4, 582–595 (1990). ArticleCAS Google Scholar
Dang, C.V., Dolde, C., Gillison, M.L. & Kato, G.J. Discrimination between related DNA sites by a single amino acid residue of Myc-related basic helix-loop-helix protein. Proc. natn. Acad. Sci. U.S.A.88, 599–601 (1992). Article Google Scholar
Van Antwerp, M.E., Chen, D.G., Chang, C. & Prochownik, E.V. A point mutation in the MyoD basic domain imparts c-myc-like properties. Proc. natn. Acad. Sci. U.S.A.88, 9010–9014 (1992). Article Google Scholar
Kunket, T.A. Rapid and efficient site-specific mutagenesis without phenotypic selections. Proc. natn. Acad. Sci. U.S.A.82, 488–492 (1985). Article Google Scholar
Jones, E., Zhu, X.L., Rohr, L.R., Stephenson, R.A. & Brothman, A.R. Aneusomy of chromosomes 7 and 17 detected by FISH in prostate cancer and the effects of selection in vitro. Genes Chrom. Cancer.11, 163–170 (1994). ArticleCAS Google Scholar