Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function (original) (raw)

References

  1. Sinclair, A.H. et al. A gene from the human sex determining region encodes a protein with homology to a conserved DNA binding motif. Nature 346, 240–2454 (1990).
    Article CAS Google Scholar
  2. Gubbay, J. et al. A gene mapping to the sex determining region of the mouse Y chromosome is a member of a new family of embryonically expressed genes. Nature 346, 245–250 (1990).
    Article CAS Google Scholar
  3. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P.N. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry . Nature 351, 117–121 (1991).
    Article CAS Google Scholar
  4. Goodfellow, P.N. & Lovell-Badge, R. Sex and sex determination in mammals. Annu. Rev. Genet. 27, 71–92 (1993).
    Article CAS Google Scholar
  5. Koopman, P., Munsterberg, A., Capel, B., Vivian, N. & Lovell-Badge, R. Expression of a candidate sex determining gene during mouse testis differentiation. Nature 348, 450–452 (1990).
    Article CAS Google Scholar
  6. Hacker, A., Capel, B., Goodfellow, P. & Lovell-Badge, R. Expression of Sry, the mouse sex determining gene. Development 121: 1603–1614 (1995).
    CAS Google Scholar
  7. Jeske, Y.W.A., Bowles, J., Greenfield, A. & Koopman, P. Expression of a linear Sry transcript in the mouse genital ridge. Nature Genet. 10, 480–482 (1995).
    Article CAS Google Scholar
  8. Nordqvist, K. & Lovell-Badge, R. Setbacks on the road to sexual fulfilment. Nature Genet. 7, 7–9 (1994).
    Article CAS Google Scholar
  9. German, J. et al. Genetically determined sex-reversal in 46,XY humans. Science 202, 53–56 (1978).
    Article CAS Google Scholar
  10. Fechner, P.Y. et al. Report of a kindred with X-linked (or autosomal dominant sex-limited) 46, XY partial gonadal dysgenesis. J. Clin. Endocr. Metab. 76, 1248–1252 (1993).
    CAS PubMed Google Scholar
  11. Bardoni, B. et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nature Genet. 7: 497–501 (1994).
    Article CAS Google Scholar
  12. Dabovic, B. et al. A family of rapidly evolving genes from the sex reversal critical region in Xp21. Mammalian Genome (in the press).
  13. Zanaria, E. et al. An unusual member of the nuclear hormone receptor super-family responsible for X-linked adrenal hypoplasia congenita. Nature 372, 635–641 (1994).
    Article CAS Google Scholar
  14. Muscatelli, R. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).
    Article CAS Google Scholar
  15. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1987).
    Article CAS Google Scholar
  16. Leid, M., Kastner, P. & Chambon, R. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem. Sci. 17, 427–433 (1992).
    Article CAS Google Scholar
  17. Chambon, R. The retinoid signalling pathway: molecular and genetic analysis. Semin. Cell Biol. 5, 115–125 (1994).
    Article CAS Google Scholar
  18. Capel, B. & Lovell-Badge, R. The Sry gene and sex determination in mammals. Adv. Dev. Biol. 2, 1–35 (1993).
    Article Google Scholar
  19. Seidl, K. & Unsicker, K. The determination of the adrenal medullary cell fate during embryogenesis. Dev. Biol. 136, 481–490 (1989).
    Article CAS Google Scholar
  20. Rogler, L.E. & Pintar, J.E. Expression of the P450 side-chain cleavage and adrenodoxin genes begins during early stages of adrenal cortex development. Mol. Endocr. 7, 453–461 (1993).
    CAS Google Scholar
  21. Buehr, M., Gu, S. & McLaren, A. Mesonephric contribution to testis differentiation in the fetal mouse. Developement 117, 273–281 (1992).
    Google Scholar
  22. Whitfield, S., Lovell-Badge, R. & Goodfellow, P.N. Rapid sequence evolution ofthe sex determining gene SRY. Nature 364, 713–715 (1993).
    Article CAS Google Scholar
  23. Tucker, P.K. & Lundrigan, B.L. Rapid evolution of the sex determining locus in Old World mice and rats. Nature 364, 715–717 (1993).
    Article CAS Google Scholar
  24. Foster, J.W. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an _SRY_-related gene. Nature 372, 525–530 (1994).
    Article CAS Google Scholar
  25. Wagner, T. et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the _SRY_-related gene SOX9 . Cell 79, 1111–1120 (1994).
    Article CAS Google Scholar
  26. Wright, E. et al. The _Sry_-related gene Sox-9 is expressed during chondrogenesis in mouse embryos. Nature Genet. 9, 15–20 (1995).
    Article CAS Google Scholar
  27. Kreidberg, J.A. et al. Wt-1 is required for for early kidney development. Cell 74, 679–691 (1993).
    Article CAS Google Scholar
  28. Mueller, R.F., Denys-Drash syndrome. J. Med. Genet. 31, 471–177 (1994).
    Article CAS Google Scholar
  29. Luo, X. et al. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).
    Article CAS Google Scholar
  30. Shen, W.-H. et al. Nuclear receptor steroidogenic factor 1 regulates the Mullerian inhibiting substance gene: a link to the sex determination pathway. Cell 77: 651–661 (1994).
    Article Google Scholar
  31. Bouget, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382 (1995).
    Article Google Scholar
  32. Kletter, G.B., Gorski, J.L. & Kelch, R.P. Congenital adrenal hypoplasia and isolated gonadotropin deficiency. Trends Endocr. Met. 2, 123–128 (1991).
    Article Google Scholar
  33. Ingraham, H.A. et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels ofthe reproductive axis. Genes Dev. 8, 2302–2312 (1994).
    Article CAS Google Scholar
  34. Ikeda, Y., Luo, X., Abbud, R., Nilson, J. & Parker, K.L. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol. Endocr. 9, 478–486 (1995).
    CAS Google Scholar
  35. Lovell-Badge, R. & Hacker, A. The molecular genetics of Sry and its role in mammalian sex determination. Phil. Trans. R. Soc. Lond. B. 350, 205–214 (1995).
    Article CAS Google Scholar
  36. Haqq, C.M. et al. Molecular basis of mammalian sexual determination: activation of Mullerian inhibiting substance gene expression by SRY . Science 266, 1494–1500 (1994).
    Article CAS Google Scholar
  37. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory Press, New York, 1989).
  38. Wilkinson, D. & Nieto, M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts, in Guide to Techniques in Mouse Development Methods in Enzymology, Vol. 225 (eds Wassarman, P.M. & DePamphilis, M.L.) 361–372 (Academic Press, New York, 1993).
    Chapter Google Scholar
  39. Chirgwin, J. et al. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).
    Article CAS Google Scholar
  40. Dresser, D.W., Hacker, A., Lovell-Badge, R. & Guerrier, D. The genes for a spliceosome protein (SAP62) and the anti-Mullerian (AMH) are contiguous. Hum. Mol. Genet. 4, 1613–1618 (1995).
    Article CAS Google Scholar

Download references