Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury (original) (raw)

References

  1. Fridovich, I. Superoxide dismutases: an adaptation to a paramagnetic gas. J.Biol. Chem. 264, 7761–7764 (1989).
    CAS PubMed Google Scholar
  2. McCord, J.M. Human disease, free radicals and the oxidant/antioxiant balance. Clin. BioChem. 26, 351–357 (1993).
    Article CAS Google Scholar
  3. Beyer, W., Imlay, J. & Fridovich, I. Superoxide dismutases. Prog. Nucl. Acid Res. Mol. Biol. 40, 221–253 (1991).
    Article CAS Google Scholar
  4. Bilinski, T., Krawiec, Z., Liczmanski, A. & LJtwinska, J. Is hydroxyl radical generated by the Fenton reaction in vivo?. Biochem. Biophys. Res. Commun. 130, 533 (1985).
    Article CAS Google Scholar
  5. Phillips, J.P., Campbell, S.D., Michaud, D., Charbonneau, M. & Hilliker, A.J. Null mutation of copper/zinc Superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA. 86, 2761–2765 (1989).
    Article CAS Google Scholar
  6. Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet. 11, 376–381 (1995).
    Article CAS Google Scholar
  7. Rosen, D.R. et al.Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).
    Article CAS Google Scholar
  8. Deng, H.-X. et al.Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261, 1047–1051 (1993).
    Article CAS Google Scholar
  9. Bowling, A.C., Brown, R.H. & Beal, M.F. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322–2325 (1993).
    Article CAS Google Scholar
  10. Borchelt, D.R. et al.Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 91, 8298–8296 (1994).
    Article Google Scholar
  11. Gurney, M.E. et al.Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).
    Article CAS Google Scholar
  12. Wong, P.C. et al.An adverse property of a familial ALS-linked by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).
    Article CAS Google Scholar
  13. Carlioz, A. & Touati, D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBOJ. 5, 623–630 (1986).
    Article CAS Google Scholar
  14. Marklund, S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 222, 649–655 (1984).
    Article CAS Google Scholar
  15. Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518 (1996).
    Article CAS Google Scholar
  16. Beckman, J.S., Chen, J., Crow, J.R. & Ye, Y.Z. Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog. Brain Res. 103, 371–380 (1994).
    Article CAS Google Scholar
  17. Reaume, A.G. et al. Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831–1833 (1995).
    Article CAS Google Scholar
  18. Wood, S.A., Alien, N.D., Rossant, J., Auerbach, A. & Nagy, A. Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365, 87–69 (1993).
    Article CAS Google Scholar
  19. Paoletti, F., Aldinucci, D., Mocali, A. & Caparrini, A. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154, 536–541 (1986).
    Article CAS Google Scholar
  20. Levine, R.L., Williams, J.A., Stadtman, E.R. & Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. Meth. Enz. 233, 346–357 (1994).
    Article CAS Google Scholar
  21. Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212 (1980).
    Article CAS Google Scholar
  22. Yan, Q., Elliott, J.L. & Snider, W.D. Brain-derived neurotrophic factor (BDNF) rescues spinal motoneurons from axotomy-induced cell death. Nature 360, 753–755 (1992).
    Article CAS Google Scholar
  23. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–362 (1988).
    Article CAS Google Scholar

Download references