Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity (original) (raw)
References
Leiter, E. Obesity genes and diabetes induction in the mouse. Crit. Rev. FoodSci. Nutr.33, 333–338 (1993). ArticleCAS Google Scholar
Bray, G.A., Fisler, J. & York, D.A. Neuroendocrine control of the development of obesity: understanding gained from studies of experimental animal models. Front Obesity.11, 128–181 (1990). Google Scholar
Michaud, E.J. et al. Differential expression of a new dominant agouti allele (Aiapy is correlated with methylation state and is influenced by parental lineage. Genes Devel.8, 1463–1472. (1994). ArticleCAS Google Scholar
Lu, D. et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature371, 799–802 (1994). ArticleCAS Google Scholar
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature372, 425–432 (1994). ArticleCAS Google Scholar
Coleman, D.L. & Eicher, E.M. Fat (fat) and tubby (tub), two autosomal recessive mutations causing obesity syndromes in the mouse. J. Hered.81, 424–427 (1990). ArticleCAS Google Scholar
Coleman, D.L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia14, 141–148 (1978). ArticleCAS Google Scholar
Leiter, E. & Chapman, H. Obesity-induced diabetes (diabesity) in C57BL/ KsJ mice produces aberrant _trans_-regulation of sex steroid sulfotransferase genes. J. Clin. Invest.93, 2007–2013 (1994). ArticleCAS Google Scholar
Leiter, E., Chapman, H. & Falany, C. Synergism of obesity genes with hepatic steroid sulfotransferases to mediate diabetes in mice. Diabetes40, 1360–1363 (1991). ArticleCAS Google Scholar
Paigen, B.J. & Coleman, D.L. Linkage of fat to esterase-1. Mouse Genome86, 240 (1990). Google Scholar
Fricker, L.D., in Peptide Biosynthesis and Processing (ed Fricker, L. D.) 199–228 (CRC Press, Boca Baton, 1991). Google Scholar
Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet.7, 220–245 (1994). ArticleCAS Google Scholar
Steiner, D.F., Smeekens, S.P., Ohagi, S. & Chan, S.J. The new enzymology of precursor processing endopeptidases. J. biol. Chem.267, 23435–23438 (1992). CASPubMed Google Scholar
Rhodes, C.J. & Alarcón, C. What β-cell defect could lead to hyperproinsulinemia in NIDDM?. Diabetes.43, 511–517 (1994). ArticleCAS Google Scholar
Davidson, H.W. & Mutton, J.C. The insulin secretory granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem. J.245, 575–582 (1987). ArticleCAS Google Scholar
Orci, L. et al. Direct identification of prohormone conversion site in insulin secreting cells. Cell42, 671–681 (1985). ArticleCAS Google Scholar
Manser, E. et al. Human carboxypeptidase E: isolation and characterization of the cDNA, sequence conservation, expression, and processing in vitro. Biochem. J.267, 517–525 (1990). ArticleCAS Google Scholar
Fricker, L.D. et al. Isolation and sequence analysis of a cDNA for rat carboxypeptidase E [EC 3.4.17.10], a neuropeptide processing enzyme. Molec. Endocrinol.3, 666–673 (1989). ArticleCAS Google Scholar
Fricker, L.D., Evans, C.J., Each, F.S. & Herbert, E. Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature323, 461–464 (1986). ArticleCAS Google Scholar
Roth, W.W., Mackin, R.B., Spiess, J., Goodman, R.E. & Noe, B.D. Primary structure and tissue distribution of anglerfish carboxypeptidase E. Molec. cell. Endocrinol.78, 171–178 (1991). ArticleCAS Google Scholar
Gidh-Jain, M. et al. Glucokinase mutation associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: Implications for structure/function relationships. Proc. Natl. Acad. Sci. USA90, 1932–1936 (1993). ArticleCAS Google Scholar
Hager, M. et al. A missense mutation in the glycogen receptor gene is associated with non-insulin-dependent diabetes mellitus. Nature Genet.9, 299–304 (1995). ArticleCAS Google Scholar
Leonetti, D.L., Prigeon, R.L., Boyko, E.J., Bergstrom, R.W. & Fujimoto, W.Y. Proinsulin as a marker for the development of NIDDM in Japanese-American men. Diabetes44, 173–179 (1995). Article Google Scholar
Porte, D.J. & Kahn, S.E. Hyperproinsulinemia and amyloid in NIDDM: clues to the etiology of beta cell dysfunction. Diabetes38, 1333–1336 (1989). ArticleCAS Google Scholar
Porte, D. . β-cells in type II diabetes mellitus. Diabetes40, 166–180 (1991). Article Google Scholar
Steiner, D.F. et al. Lessons learned from molecular biology of insulin gene mutations. Diabetes Care13, 600–609 (1990). ArticleCAS Google Scholar
Birkeland, K.I., Torjesen, P.A., Eriksson, J., Vaaler, S. & Groop, L. Hyperproinsulinemia of type II diabetes is not present before the development of hyperglycemia. Diabetes Care.17, 1307–1310 (1994). ArticleCAS Google Scholar
Gadot, M. et al. Hyperproinsulinemia and insulin deficiency in the diabetic Psammomys obesus. Endocrinology.135, 610–616 (1994). ArticleCAS Google Scholar
Flatt, P.R., Bailey, C.J., Hampton, S.M., Swanston-Flatt, S.K. & Marks, V., C-peptide in spontaneous syndromes of obesity and diabetes in mice. Norm. Metabol. Res.19, 1–5 (1987). ArticleCAS Google Scholar
Ozcelik, T., Suedhof, T.C. & Francke, U. Chromosomal assignment of genes for vacuolar (endomembrane) proton pump subunits VPP1/Vpp-1 (116 KDa) and VPP3/Vpp-3 (58 kd) in human and mouse. Cytogen. Cell Genet.58, 2008–2009 (1991). Google Scholar
Orci, L. et al. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle. J. Cell Biol.126, 1149–1156 (1994). ArticleCAS Google Scholar
Jung, Y.-K., Kunczt, C.J., Pearson, R.K., Dixon, J.E. & Fricker, L.D. Structural characterization of the rat carboxypeptidase-E gene. Molec. Endocrinol.5, 1257–1268 (1991). ArticleCAS Google Scholar
Stone, R.L. et al. A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nature Genet.1, 59–63 (1992). ArticleCAS Google Scholar
Leiter, E.H. Type C retrovirus production by pancreatic beta cells. Association with accelerated pathogenesis in C3H-db/db (“diabetes”) mice. Am. J. Pathol119, 22–32 (1985). CASPubMedPubMed Central Google Scholar
Prochazka, M., Serreze, D.V., Frankel, W.N. & Leiter, E.H. NOR/Lt; MHC-matched diabetes-resistant control strain for NOD mice. Diabetes41, 98–106 (1992). ArticleCAS Google Scholar
Lander, E. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics1, 174–181 (1987). ArticleCAS Google Scholar
Manley, K. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm. Genome4, 301–313 (1993). Article Google Scholar
Tager, H.S., Rubenstein, A.H. & Steiner, D.F. in Methods in Enzymology (eds O'Malley, B. W. & Hardman, J.G.) 326–345 (Academic Press, New York, 1975). Google Scholar
Fricker, L.D. Methods for studying carboxypeptidase E. Meth. Neurosci.23, 237–250 (1995). ArticleCAS Google Scholar
Fricker, L.D., Das, B. & Angeletti, R.H. Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3. 4.17.10). J. biol. Chem.265, 2476–2482 (1990). CASPubMed Google Scholar