Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity (original) (raw)

References

  1. Leiter, E. Obesity genes and diabetes induction in the mouse. Crit. Rev. FoodSci. Nutr. 33, 333–338 (1993).
    Article CAS Google Scholar
  2. Bray, G.A., Fisler, J. & York, D.A. Neuroendocrine control of the development of obesity: understanding gained from studies of experimental animal models. Front Obesity. 11, 128–181 (1990).
    Google Scholar
  3. Michaud, E.J. et al. Differential expression of a new dominant agouti allele (Aiapy is correlated with methylation state and is influenced by parental lineage. Genes Devel. 8, 1463–1472. (1994).
    Article CAS Google Scholar
  4. Lu, D. et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371, 799–802 (1994).
    Article CAS Google Scholar
  5. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).
    Article CAS Google Scholar
  6. Coleman, D.L. & Eicher, E.M. Fat (fat) and tubby (tub), two autosomal recessive mutations causing obesity syndromes in the mouse. J. Hered. 81, 424–427 (1990).
    Article CAS Google Scholar
  7. Coleman, D.L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141–148 (1978).
    Article CAS Google Scholar
  8. Leiter, E. & Chapman, H. Obesity-induced diabetes (diabesity) in C57BL/ KsJ mice produces aberrant _trans_-regulation of sex steroid sulfotransferase genes. J. Clin. Invest. 93, 2007–2013 (1994).
    Article CAS Google Scholar
  9. Leiter, E., Chapman, H. & Falany, C. Synergism of obesity genes with hepatic steroid sulfotransferases to mediate diabetes in mice. Diabetes 40, 1360–1363 (1991).
    Article CAS Google Scholar
  10. Paigen, B.J. & Coleman, D.L. Linkage of fat to esterase-1. Mouse Genome 86, 240 (1990).
    Google Scholar
  11. Fricker, L.D., in Peptide Biosynthesis and Processing (ed Fricker, L. D.) 199–228 (CRC Press, Boca Baton, 1991).
    Google Scholar
  12. Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245 (1994).
    Article CAS Google Scholar
  13. Steiner, D.F., Smeekens, S.P., Ohagi, S. & Chan, S.J. The new enzymology of precursor processing endopeptidases. J. biol. Chem. 267, 23435–23438 (1992).
    CAS PubMed Google Scholar
  14. Rhodes, C.J. & Alarcón, C. What β-cell defect could lead to hyperproinsulinemia in NIDDM?. Diabetes. 43, 511–517 (1994).
    Article CAS Google Scholar
  15. Davidson, H.W. & Mutton, J.C. The insulin secretory granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem. J. 245, 575–582 (1987).
    Article CAS Google Scholar
  16. Orci, L. et al. Direct identification of prohormone conversion site in insulin secreting cells. Cell 42, 671–681 (1985).
    Article CAS Google Scholar
  17. Manser, E. et al. Human carboxypeptidase E: isolation and characterization of the cDNA, sequence conservation, expression, and processing in vitro. Biochem. J. 267, 517–525 (1990).
    Article CAS Google Scholar
  18. Fricker, L.D. et al. Isolation and sequence analysis of a cDNA for rat carboxypeptidase E [EC 3.4.17.10], a neuropeptide processing enzyme. Molec. Endocrinol. 3, 666–673 (1989).
    Article CAS Google Scholar
  19. Fricker, L.D., Evans, C.J., Each, F.S. & Herbert, E. Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature 323, 461–464 (1986).
    Article CAS Google Scholar
  20. Roth, W.W., Mackin, R.B., Spiess, J., Goodman, R.E. & Noe, B.D. Primary structure and tissue distribution of anglerfish carboxypeptidase E. Molec. cell. Endocrinol. 78, 171–178 (1991).
    Article CAS Google Scholar
  21. Gidh-Jain, M. et al. Glucokinase mutation associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: Implications for structure/function relationships. Proc. Natl. Acad. Sci. USA 90, 1932–1936 (1993).
    Article CAS Google Scholar
  22. Hager, M. et al. A missense mutation in the glycogen receptor gene is associated with non-insulin-dependent diabetes mellitus. Nature Genet. 9, 299–304 (1995).
    Article CAS Google Scholar
  23. Leonetti, D.L., Prigeon, R.L., Boyko, E.J., Bergstrom, R.W. & Fujimoto, W.Y. Proinsulin as a marker for the development of NIDDM in Japanese-American men. Diabetes 44, 173–179 (1995).
    Article Google Scholar
  24. Porte, D.J. & Kahn, S.E. Hyperproinsulinemia and amyloid in NIDDM: clues to the etiology of beta cell dysfunction. Diabetes 38, 1333–1336 (1989).
    Article CAS Google Scholar
  25. Porte, D. . β-cells in type II diabetes mellitus. Diabetes 40, 166–180 (1991).
    Article Google Scholar
  26. Steiner, D.F. et al. Lessons learned from molecular biology of insulin gene mutations. Diabetes Care 13, 600–609 (1990).
    Article CAS Google Scholar
  27. Birkeland, K.I., Torjesen, P.A., Eriksson, J., Vaaler, S. & Groop, L. Hyperproinsulinemia of type II diabetes is not present before the development of hyperglycemia. Diabetes Care. 17, 1307–1310 (1994).
    Article CAS Google Scholar
  28. Gadot, M. et al. Hyperproinsulinemia and insulin deficiency in the diabetic Psammomys obesus. Endocrinology. 135, 610–616 (1994).
    Article CAS Google Scholar
  29. Poffenbarger, P.L., Chick, W.L., Lavine, R.L., Soeldner, J.S. & Flewelling, J.H. Insulin biosynthesis in experimental hereditary diabetes. Diabetes 20, 677–685 (1971).
    Article CAS Google Scholar
  30. Flatt, P.R., Bailey, C.J., Hampton, S.M., Swanston-Flatt, S.K. & Marks, V., C-peptide in spontaneous syndromes of obesity and diabetes in mice. Norm. Metabol. Res. 19, 1–5 (1987).
    Article CAS Google Scholar
  31. Ozcelik, T., Suedhof, T.C. & Francke, U. Chromosomal assignment of genes for vacuolar (endomembrane) proton pump subunits VPP1/Vpp-1 (116 KDa) and VPP3/Vpp-3 (58 kd) in human and mouse. Cytogen. Cell Genet. 58, 2008–2009 (1991).
    Google Scholar
  32. Orci, L. et al. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle. J. Cell Biol. 126, 1149–1156 (1994).
    Article CAS Google Scholar
  33. Jung, Y.-K., Kunczt, C.J., Pearson, R.K., Dixon, J.E. & Fricker, L.D. Structural characterization of the rat carboxypeptidase-E gene. Molec. Endocrinol. 5, 1257–1268 (1991).
    Article CAS Google Scholar
  34. Stone, R.L. et al. A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nature Genet. 1, 59–63 (1992).
    Article CAS Google Scholar
  35. Leiter, E.H. Type C retrovirus production by pancreatic beta cells. Association with accelerated pathogenesis in C3H-db/db (“diabetes”) mice. Am. J. Pathol 119, 22–32 (1985).
    CAS PubMed PubMed Central Google Scholar
  36. Prochazka, M., Serreze, D.V., Frankel, W.N. & Leiter, E.H. NOR/Lt; MHC-matched diabetes-resistant control strain for NOD mice. Diabetes 41, 98–106 (1992).
    Article CAS Google Scholar
  37. Lander, E. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).
    Article CAS Google Scholar
  38. Manley, K. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm. Genome 4, 301–313 (1993).
    Article Google Scholar
  39. Tager, H.S., Rubenstein, A.H. & Steiner, D.F. in Methods in Enzymology (eds O'Malley, B. W. & Hardman, J.G.) 326–345 (Academic Press, New York, 1975).
    Google Scholar
  40. Fricker, L.D. Methods for studying carboxypeptidase E. Meth. Neurosci. 23, 237–250 (1995).
    Article CAS Google Scholar
  41. Fricker, L.D., Das, B. & Angeletti, R.H. Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3. 4.17.10). J. biol. Chem. 265, 2476–2482 (1990).
    CAS PubMed Google Scholar

Download references