A gene mutated in X–linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast (original) (raw)

References

  1. Wallgren-Pettersson, C. & Thomas, N. Report on the 20th ENMC sponsored international workshop: myotubular/centronuclear myopathy. Neuromusc.Descord. 4, 71–74 (1994).
    Article CAS Google Scholar
  2. Fardeau, M., Congential Myopathy in Skeletal muscle Pathology (eds Mastaglia, F.L & Walton of Detchant) (Edinburgh, Churchill Livingstone, 1992).
    Google Scholar
  3. Sarnat, H.B., Myopathy: arrest of morphogenesis of myofibers associated with persistence of fetal vimentine and desmin Four cases compared with fetal and neonatal muscle. Can. J. Neurol. Sci. 17, 109–123 (1990).
    Article CAS Google Scholar
  4. Sawchak, J.A., Sher, J.H., Norman, M.G., Kula, R.W. & Shafiq, S.A. Centronuclear myopathy heterogeneity: distinction of clinical types by myosin isoform patterns. Neurol. 41, 135–140 (1991).
    Article CAS Google Scholar
  5. Wallgren-Pettersson, C. et al. The Myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DMA studies. J. Med. Genet. 32, 673–679 (1995).
    Article CAS Google Scholar
  6. Heckmatt, J.Z., Sewry, C.A., Hodes, D. & Dubowitz, V. Congenital centronuclear (myotubular) myopathy: a clinical, pathological and genetic study in eight children. Brain 108, 941–064 (1985).
    Article Google Scholar
  7. Thomas, N. et al. X-linked centronuclear/myotubular myopathy: evidence for linkage to Xq28 DMA marker loci. J. Med. Genet. 27, 284–287 (1990).
    Article CAS Google Scholar
  8. Damfors, C. et al. X-linked myotubular myopathy: a linkage study. Clin. Genet. 37, 335–340 (1990).
    Article Google Scholar
  9. Lehesjoki, A.E. et al. X-linked neonatal myotubular myopathy: one recombination detected with four polymorphic DMA markers from Xq28. J. Med. Genet. 27, 288–291 (1990).
    Article CAS Google Scholar
  10. Start, J., Lamont, M., L, Harvey, J.& Heckmatt, J. A linkage study of a large pedigree with X-linked centronuclear myopathy. J. Med. Genet. 27, 281–283 (1990).
    Article Google Scholar
  11. Liechti-Gallati, S. et al. X-linked centronuclear myopathy: mapping the gene to Xq28. Neuromusc. Disord. 4, 239–245 (1991).
    Article Google Scholar
  12. Janssen, E.A. et al. The gene for X-linked myotubular myopathy is located in an 8 Mb region at the border of Xq27. 3 and Xq28. Neuromusc. Disord. 4, 455–461 (1994).
    Article CAS Google Scholar
  13. Dahl, N. et al. X linked myotubular myopathy (MTM1) maps between DXS304 and DXS305, closely linked to the DXS455 VNTR and a new, highly informative microsatellite marker (DXS1684). J. Med. Genet. 31, 922–924 (1994).
    Article CAS Google Scholar
  14. Dahl, N. et al.Myotubular myopathy in a girl with a deletion at Xq27–q28 and unbalanced X inactivation assigns the MTM1 gene to a 600-kb region. Am. J. Hum. Genet. 56, 1108–1115 (1995).
    CAS PubMed PubMed Central Google Scholar
  15. Hu, L.J. et al. Deletions in Xq28 in two boys with Myotubular myopathy and abnormal genital development define a new contiguous gene syndrome in a 430kb region. Hum. Mol. Genet. 5, 139–143 (1996).
    Article CAS Google Scholar
  16. Kioschis, P. et al. A 900-kb cosmid contig and 1 à new transcripts within the candidate region for myotubular myopathy (MTM1). Genomics (in the press).
  17. Hu, L.J. et al. X-linked myotubular myopathy: refinement of the gene to a 280 kb region with new and highly informative microsatellite markers. Hum. Genet. (in the press).
  18. Korn, B. et al. A strategy for the selection of transcribed sequences in Xq28 region. Hum. Mol. Genet. 4, 235–242 (1992).
    Article Google Scholar
  19. Sedlacek, Z. et al. Construction of a 300 kb region around the human G6PD locus by direct cDNA selection. Hum. Mol. Genet. 11, 1865–1869 (1993).
    Article Google Scholar
  20. Buckler, A.J. et al. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. NaU. Acad. Sci. USA 88, 4005–4009 (1991).
    Article CAS Google Scholar
  21. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DMA using exon amplification. Nature Genet. 6, 98–105 (1994).
    Article CAS Google Scholar
  22. Andersson, B., Lu, F., Muzny, D.M. & Gibbs, R.A. Complete sequence of a 38. 4-kb human cosmid insert containing the polymorphic marker DXS455 from Xq28. DNASeq. 5, 219–223 (1995).
    CAS Google Scholar
  23. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in humanDNA sequences by a multiple sensor-neural approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).
    Article CAS Google Scholar
  24. Xu, Y., Mural, R., Shah, M. & Uberbacher, E. Recognizing exons in genomic sequence using GRAIL II. Genet. Eng. (N. Y.) 16, 241–253 (1994).
    CAS Google Scholar
  25. Solovyev, V.V., Salamov, A.A. & Lawrence, C.B. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucl. Acids Res. 22, 5156–5163 (1994).
    Article CAS Google Scholar
  26. Gregg, R.G., Metzenberg, A.B., Hogan, K., Sekhon, G. & Laxova, R. Waisman syndrome, a human X-linked recessive basal ganglia disorder with mental retardation: localization toXq27 3-qter. Genomics 9, 701–706 (1991).
    Article CAS Google Scholar
  27. Gedeon, A., Kerr, B., Mulley, J. & Turner, G. Localisation of the MRX3 gene for non-specific X linked mental retardation. J. Med. Genet. 28, 372–377 (1991).
    Article CAS Google Scholar
  28. Biancalana, V., Le Marec, B., Odent, S., Van den Hurk, J.A.M.J. & Hanauer, A. Oto-palato-digital syndrome type I: further evidence for assignement of the locus to Xq28. Hum. Genet. 88, 228–230 (1991).
    Article CAS Google Scholar
  29. Palmieri, G. et al. YAC contig organization and CpG island analysis in Xq28. Genomics 24, 149–158 (1994).
    Article CAS Google Scholar
  30. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basis local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  31. Fischer, E.H., Charbonneau, H. & Tonks, N.K. Proteintyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253, 401–406 (1991).
    Article CAS Google Scholar
  32. Mourey, R.J. & Dixon, J.E. Protein tyrosine phosphatases: characterization of extracellular and intracellular domains. Curr. Opin. Genet. Dev. 4, 31–39 (1994).
    Article CAS Google Scholar
  33. Mosser, J. et al. Putative X-linked adrendeukodystrophy gene shares unexpected homdogy with ABC transporters. Nature 361, 726–730 (1993).
    Article CAS Google Scholar
  34. Bronner, C.E. et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-pdyposis colon cancer. Nature 368, 258–261 (1994).
    Article CAS Google Scholar
  35. Tugendreich, S., Bassett, D.E., McKusick, V.A., Boguski, M.S. & Hieter, R. Genes conserved in yeast and humans. Hum. Mol. Genet. 3, 1509–1517 (1994).
    Article CAS Google Scholar
  36. Tonks, N.K. Introduction: protein tyrosine phosphatases. Semin. Cell Biol. 4, 373–377 (1993).
    Article CAS Google Scholar
  37. Samson, F. et al. Genetic linkage heterogeneity in myotubular myopathy. Am. J. Hum. Genet. 57, 120–126 (1995).
    CAS PubMed PubMed Central Google Scholar
  38. Donoghue, M.J. & Sanes, J.R. All muscles are not created equal. Trends. Genet. 10, 39–6401 (1994).
    Article Google Scholar
  39. Florini, J.R., Ewton, D.Z. & Magri, K.A., Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53, 201–216 (1991).
    Article CAS Google Scholar
  40. Valenzuela, D.M. et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573–584 (1995).
    Article CAS Google Scholar
  41. Rastinejad, F., Conboy, M.J., Rando, T.A. & Blau, H.M. Tumor suppression by RNA from the 3′ untranslated region of alpha-tropomyosin. Cell 75, 1107–1117 (1993).
    Article CAS Google Scholar
  42. Miller, S., Dykes, D. & Polesky, H. A simple salting out method for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 (1988).
    Article CAS Google Scholar
  43. Oberie, I. et al. Characterization of a set of X-linked sequences and of a panel of somatic cell hybrids useful for the regional mapping of the human X chromosome. Hum. Genet. 72, 43–49 (1986).
    Article Google Scholar
  44. Berry, R. et al. Gene-based sequence-tagged-sites (STSs) as the basis for a human gene map. Nature Genet. 10, 415–423 (1995).
    Article CAS Google Scholar
  45. Lanfranchi, G. et al. Identification of 4,370 expressed sequence tags (ESTs) from a 3′-end specific cDNA library of human skeletal muscle by DNA sequencing and fitter hybridization. Genome Res. (in the press).
  46. Castilla, L.H. et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nature Genet. 8, 387–391 (1994).
    Article CAS Google Scholar
  47. Wilson, R. et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994).
    Article CAS Google Scholar
  48. Gribskov, M. & Burgess, R.R. Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucl. Acids Res. 14, 6745–6763 (1986).
    Article CAS Google Scholar
  49. Lan, M.S., Lu, J., Goto, Y. & Notkins, A.L. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol. 13, 505–514 (1994).
    Article CAS Google Scholar
  50. Yang, Q. & Tonks, N.K. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4 1, erzin, and talin. Proc. Natl. Acad. Sci. USA 88, 5949–5953 (1991).
    Article CAS Google Scholar
  51. Streuli, M., Krueger, N.X., Tsai, A.Y.M. & Saito, H. A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc. Natl. Acad. Sci. USA 86, 8698–6702 (1989).
    Article CAS Google Scholar
  52. Mauro, L.J. et al. Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differenciation. J. Biol. Chem. 269, 30659–30667 (1994).
    CAS PubMed Google Scholar

Download references