Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND (original) (raw)
References
DeHaan, R.L., Organogenesis (eds DeHaan, R. L, & Ursprung, H.) 377–419 (Holt Rinehart & Winston Inc., New York, 1964).
Olson, E.N. & Srivastava, D. Molecular pathways controlling heart development. Science272, 671–676 (1996). ArticleCASPubMed Google Scholar
Olson, E.N. & Klein, W.H. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev.8, 1–6 (1994). ArticleCASPubMed Google Scholar
Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature373, 432–434 (1995). ArticleCASPubMed Google Scholar
Jan, L.Y. & Jan, Y.N. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell75, 827–830 (1993). ArticleCASPubMed Google Scholar
Srivastava, D., Cserjesi, P. & Olson, E.N. A subclass of bHLH proteins required for cardiogenesis. Science270, 1995–1999 (1995). ArticleCASPubMed Google Scholar
Cserjesi, P., Brown, D., Lyons, G.E. & Olson, E.N. Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev. Biol.170, 664–678 (1995). ArticleCASPubMed Google Scholar
Hollenberg, S.M., Sternglanz, R., Cheng, P.F. & Weintraub, H. Identification of a newfamily of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol.15, 3813–3822 (1995). ArticleCASPubMedPubMed Central Google Scholar
Cross, J.C. et al. Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development121, 2513–2523 (1995). CASPubMed Google Scholar
Yutzey, K.E. & Bader, D. Diversification of cardiomyogenic cell lineages during early heart development. Circ. Res.77, 216–219 (1995). ArticleCASPubMed Google Scholar
Mikawa, T., Borisov, A., Brown, A.M.C. & Fischman, D.A. Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev. Dyn.193, 11–23 (1992). ArticleCASPubMed Google Scholar
Stanier, D.Y.R. & Fishman, M.C. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev. Biol.153, 91–101 (1992). Article Google Scholar
Ross, R.S., Navankasattusas, S., Harvey, R.P. & Chien, K.R. HF-1a/HF-1b/MEF2 combinatorial element confers cardiac ventricular specificity and establishes ananterior-posterior gradient of expression via an Nkx2x. 5 independent pathway. Development122, 1799–1809 (1996). CASPubMed Google Scholar
Kuisk, I.R., Li, H., Tran, D. & Capetanaki, Y. A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev. Biol.174, 1–13 (1996). ArticleCASPubMed Google Scholar
Kelly, R., Alonso, S., Tajbakhsh, S., Cossu, G. & Buckingham, M. Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J. Cell Biol.129, 383–396 (1995). ArticleCASPubMed Google Scholar
Jiang, Y. & Evans, T. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev. Biol.174, 258–270 (1996). ArticleCASPubMed Google Scholar
Laverriere, A.C. et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J.Biol. Chem.269, 23177–23184 (1994). CASPubMed Google Scholar
Morrisey, E.E., Ip, H.S., Lu, M.M. & Parmacek, M.S. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol.177, 309–322 (1996). ArticleCASPubMed Google Scholar
Edmondson, D.G., Lyons, G.E., Martin, J.F. & Olson, E.N. MEF2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development120, 1251–1263 (1994). CASPubMed Google Scholar
Kirby, M.L. & Waldo, K.L. Role of neural crest in congenital heart disease. cir. Res.77, 211–215 (1995). ArticleCAS Google Scholar
Serbedzija, G.N., Bronner-Fraser, M. & Fraser, S.E. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development116, 297–307 (1992). CASPubMed Google Scholar
Lyons, I. et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev.9, 1654–1666 (1995). ArticleCASPubMed Google Scholar
Lin, Q., Schwartz, J.A. & Olson, E.N. Control of cardiac morphogenesis and myogenesis by the myogenic transcription factor MEF2C. Science, in press (1997). Google Scholar
Eisenberg, L.M. & Markwald, R.R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Cir. Res.77, 1–6 (1995). ArticleCAS Google Scholar
Rossant, J. Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ. Res.78, 349–353 (1996). ArticleCASPubMed Google Scholar
Levin, M., Johnson, R.L., Stern, C.D., Kuehn, M. & Tabin, C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell82, 803–814 (1995). ArticleCASPubMed Google Scholar
Lowe, L.A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature381, 158–161 (1996). ArticleCASPubMed Google Scholar
Pexieder, T. Christen, Y., Vuillemin, M. & Patterson, D.F., in Congenital Heart Disease: Causes and Processes, 423 (Futura Publ. Co., Mount Kisco, N.Y.,1984). Google Scholar
Molkentin, J.D., Lin, Q., Duncan, S.A. & Olson, E.N. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes & Dev.11, 1061–1072 (1997). ArticleCAS Google Scholar
McMahon, A.P. & Bradley, A. Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell62, 1073–1085 (1990). ArticleCASPubMed Google Scholar
Martin, J.F., Bradley, A. & Olson, E.N. The paired-like homeobox gene Mhox is required for early events of skeletalogenesis in multiple lineages. Genes Dev.9, 1237–1249 (1995). ArticleCASPubMed Google Scholar