Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND (original) (raw)

References

  1. DeHaan, R.L., Organogenesis (eds DeHaan, R. L, & Ursprung, H.) 377–419 (Holt Rinehart & Winston Inc., New York, 1964).
  2. Olson, E.N. & Srivastava, D. Molecular pathways controlling heart development. Science 272, 671–676 (1996).
    Article CAS PubMed Google Scholar
  3. Olson, E.N. & Klein, W.H. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8, 1–6 (1994).
    Article CAS PubMed Google Scholar
  4. Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995).
    Article CAS PubMed Google Scholar
  5. Jan, L.Y. & Jan, Y.N. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827–830 (1993).
    Article CAS PubMed Google Scholar
  6. Srivastava, D., Cserjesi, P. & Olson, E.N. A subclass of bHLH proteins required for cardiogenesis. Science 270, 1995–1999 (1995).
    Article CAS PubMed Google Scholar
  7. Cserjesi, P., Brown, D., Lyons, G.E. & Olson, E.N. Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev. Biol. 170, 664–678 (1995).
    Article CAS PubMed Google Scholar
  8. Hollenberg, S.M., Sternglanz, R., Cheng, P.F. & Weintraub, H. Identification of a newfamily of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  9. Cross, J.C. et al. Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development 121, 2513–2523 (1995).
    CAS PubMed Google Scholar
  10. Yutzey, K.E. & Bader, D. Diversification of cardiomyogenic cell lineages during early heart development. Circ. Res. 77, 216–219 (1995).
    Article CAS PubMed Google Scholar
  11. Mikawa, T., Borisov, A., Brown, A.M.C. & Fischman, D.A. Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev. Dyn. 193, 11–23 (1992).
    Article CAS PubMed Google Scholar
  12. Stanier, D.Y.R. & Fishman, M.C. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev. Biol. 153, 91–101 (1992).
    Article Google Scholar
  13. Ross, R.S., Navankasattusas, S., Harvey, R.P. & Chien, K.R. HF-1a/HF-1b/MEF2 combinatorial element confers cardiac ventricular specificity and establishes ananterior-posterior gradient of expression via an Nkx2x. 5 independent pathway. Development 122, 1799–1809 (1996).
    CAS PubMed Google Scholar
  14. Kuisk, I.R., Li, H., Tran, D. & Capetanaki, Y. A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev. Biol. 174, 1–13 (1996).
    Article CAS PubMed Google Scholar
  15. Kelly, R., Alonso, S., Tajbakhsh, S., Cossu, G. & Buckingham, M. Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J. Cell Biol. 129, 383–396 (1995).
    Article CAS PubMed Google Scholar
  16. Harvey, R.P. NK-2 homeobox genes and heart development. Dev. Biol. 178, 203–216 (1996).
    Article CAS PubMed Google Scholar
  17. Jiang, Y. & Evans, T. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev. Biol. 174, 258–270 (1996).
    Article CAS PubMed Google Scholar
  18. Laverriere, A.C. et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J.Biol. Chem. 269, 23177–23184 (1994).
    CAS PubMed Google Scholar
  19. Morrisey, E.E., Ip, H.S., Lu, M.M. & Parmacek, M.S. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol. 177, 309–322 (1996).
    Article CAS PubMed Google Scholar
  20. Edmondson, D.G., Lyons, G.E., Martin, J.F. & Olson, E.N. MEF2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120, 1251–1263 (1994).
    CAS PubMed Google Scholar
  21. Kirby, M.L. & Waldo, K.L. Role of neural crest in congenital heart disease. cir. Res. 77, 211–215 (1995).
    Article CAS Google Scholar
  22. Serbedzija, G.N., Bronner-Fraser, M. & Fraser, S.E. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307 (1992).
    CAS PubMed Google Scholar
  23. Lyons, I. et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9, 1654–1666 (1995).
    Article CAS PubMed Google Scholar
  24. Lin, Q., Schwartz, J.A. & Olson, E.N. Control of cardiac morphogenesis and myogenesis by the myogenic transcription factor MEF2C. Science, in press (1997).
    Google Scholar
  25. Eisenberg, L.M. & Markwald, R.R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Cir. Res. 77, 1–6 (1995).
    Article CAS Google Scholar
  26. Rossant, J. Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ. Res. 78, 349–353 (1996).
    Article CAS PubMed Google Scholar
  27. Levin, M., Johnson, R.L., Stern, C.D., Kuehn, M. & Tabin, C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).
    Article CAS PubMed Google Scholar
  28. Lowe, L.A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).
    Article CAS PubMed Google Scholar
  29. Pexieder, T. Christen, Y., Vuillemin, M. & Patterson, D.F., in Congenital Heart Disease: Causes and Processes, 423 (Futura Publ. Co., Mount Kisco, N.Y.,1984).
    Google Scholar
  30. Molkentin, J.D., Lin, Q., Duncan, S.A. & Olson, E.N. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes & Dev. 11, 1061–1072 (1997).
    Article CAS Google Scholar
  31. McMahon, A.P. & Bradley, A. Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).
    Article CAS PubMed Google Scholar
  32. Martin, J.F., Bradley, A. & Olson, E.N. The paired-like homeobox gene Mhox is required for early events of skeletalogenesis in multiple lineages. Genes Dev. 9, 1237–1249 (1995).
    Article CAS PubMed Google Scholar

Download references