Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA (original) (raw)

References

  1. Horii, T., Ogawa, T. & Ogawa, H. Organization of the recA gene of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 77, 313–317 (1980).
    Article CAS Google Scholar
  2. Masukata, H., Fujii, T., Ogawa, T. & Ogawa, H. Biologically active recombinant formed through DNA pairing by purified recA protein in vitro. Molec. gen. Genet. 189, 226–234 (1983).
    Article CAS Google Scholar
  3. West, S. Enzymes and molecular mechanisms of genetic recombination. Ann. Rev. Biochem. 61, 603–640 (1992).
    Article CAS Google Scholar
  4. Tomizawa, J. & Ogawa, H. Breakage of DNA in Rec+ and Rec bacteria by disintegration of radiophosphorous atoms in DNA and possible cause of pleiotropic effects of RecA mutation. Cold Spring Harb. Symp. quant Biol. 33, 243–251 (1968).
    Article CAS Google Scholar
  5. Jachymczyk, W.J., Von Borstel, R.C., Mowat, M.R.A. & Hastings, P.J. Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: The RAD3 system and the RAD51 system. Molec. gen. Genet. 182, 196–205 (1981).
    Article CAS Google Scholar
  6. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).
    Article CAS Google Scholar
  7. Bishop, D.K., Park, D., Xu, L. & Kleckner, N. DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).
    Article CAS Google Scholar
  8. Ogawa, T., Yu, X., Shinohara, A. & Egelman, E.H. Similarity of the Yeast Rad51 Filament to the Bacterial RecA Filament. Science 259, 1896–1899 (1993).
    Article CAS Google Scholar
  9. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 16, 8126–8148 (1987).
    Google Scholar
  10. Bezzubova, O., Shinohara, A., Mueller, R.G., Ogawa, H. & Buerstedde, J.-M. A chicken RAD51 homologue is expressed at high levels in lymphoid and reproductive organs. Nucl. Acids Res. 21, 1577–1580 (1993).
    Article CAS Google Scholar
  11. Kobayashi, T., Hotta, Y. & Tabata, S. Isolation and characterization of a yeast gene which is homologous with a meiosis specific cDNA from a plant. Molec. gen. Genet. 237, 225–232 (1993).
    CAS PubMed Google Scholar
  12. Matsuda, Y. et al. Location of the mouse complement factor H gene (cfh) by FISH analysis and replication R-banding. Cytogenet. cell Genet. 61, 282–285 (1992).
    Article CAS Google Scholar
  13. Siracusa, L.D. & Abbott, C.M. Chromosome 2. Mamm. Genome 3, S20–S43 (1992).
    Article CAS Google Scholar
  14. Story, R., Weber, I.T. & Steitz, T.A. The structure of the E. coli recA protein monomer and polymer. Nature 355, 318–325 (1992).
    Article CAS Google Scholar
  15. Benedict, R.C. & Kowalczykowski, S.C. Increase of the DNA strand assimilation activity of recA protein by removal of the C-terminus and structure-function studies of the resulting protein fragment. J. biol. Chem. 263, 15513–15520 (1988).
    CAS PubMed Google Scholar
  16. Yu, X. & Egelman, E.H. Removal of the RecA C-terminus results in a conformational change in the RecA-DNA filament. J. struct. Biol. 106, 243–254 (1991).
    Article CAS Google Scholar
  17. Tateishi, S., Horii, T., Ogawa, T. & Ogawa, H. C-terminal truncated Escherichia coli RecA protein RecA5327 has enhanced binding affinities to single- and double-stranded DNAs. J. molec. Biol. 223, 115–129 (1992).
    Article CAS Google Scholar
  18. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).
    Article CAS Google Scholar
  19. Schatz, D.G., Oettinger, M.A. & Schissel, M.S. V(D)J recombination: Molecular biology and regulation. Ann. Rev. Immunol. 10, 359–383 (1992).
    Article CAS Google Scholar
  20. Lutzker, S.G. & Alt, F.W. Immunoglobulin heavy-chain class switching. In The Mobile DNA (eds Berg, D.E. & Howe, M.M.) 693–714 (American Society of Microbiology, Washington, 1989).
    Google Scholar
  21. Basile, G., Aker, M. & Mortimer, R.T. Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Molec. cell. Biol. 12, 3235–3246 (1992).
    Article CAS Google Scholar
  22. Resnick, M.A. Investigating the genetic control of biochemical events in meiotic recombination. In The Meiosis (ed. Moens, P.B.) 157–210 (Academic Press, New York, 1987).
    Chapter Google Scholar
  23. Lewin, B. Commitment and activation at Pol II promoters: A tail of protein-protein interactions. Cell 61, 1161–1164 (1990).
    Article CAS Google Scholar
  24. Gill, G. & Tjian, R. A highly conserved domain of TFIID displays species specificity in vivo. Cell 65, 333–340 (1991).
    Article CAS Google Scholar
  25. Cormack, B.P., Strubin, M., Ponticelli, A.S. & Struhl, K. Functional differences between yeast and human TFIID are localized to highly conserved region. Cell 65, 341–348 (1991).
    Article CAS Google Scholar
  26. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
    Article CAS Google Scholar
  27. Feinberg, A.P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragment to high specific activity. Anal. Biochem. 132, 6–13 (1983).
    Article CAS Google Scholar
  28. Kunkel, T.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).
    Article CAS Google Scholar
  29. Nei, M. Molecular Population Genetics and Evolution (North-Holland/American. Elsevier, Amsterdam, 1975).
    Google Scholar

Download references