PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects (original) (raw)
Jiang, J. & Levine, M. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell72, 741–752 (1993). ArticleCASPubMed Google Scholar
Chalepakis, G. et al. Pax: gene regulators in the developing nervous system. J. Neurobiol.24, 1367–1384 (1993). ArticleCASPubMed Google Scholar
Noll, M. Evolution and role of Pax genes. Curr. Opin. Genet. Develop.3, 595–605 (1993). ArticleCAS Google Scholar
Koseki, H. et al. A role for Pax-1 as a mediator of notochord signals during the dorsoventral specification of vertebrae. Development119, 649–660 (1993). CASPubMed Google Scholar
Keller, S.A. et al. Kidney and retinal defects (Krd), a transgene induced mutation with a deletion of mouse chromosome 19 that includes the Pax-2 locus. Genomics (in the press).
Epstein, D.J., Vekemans, M. & Gros, P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3 . Cell67, 767–774 (1991). ArticleCASPubMed Google Scholar
Hill, R.E. et al. Mouse small eye results from mutations in a palred-llke homeobox-contalning gene. Nature354, 522–525 (1991) [erratum, ibid. 356, 750 (1992)]. ArticleCASPubMed Google Scholar
Baldwin, C.T. et al. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature355, 637–638 (1991). Article Google Scholar
Tassabehji, M. et al. Waardenburg's sundrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature355, 635–636 (1991). Article Google Scholar
Ton, C.T.T. et al. Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell67, 1059–1074 (1991). ArticleCASPubMed Google Scholar
Jordan, T. et al. The human PAX6 gene is mutated in two patients with aniridia. Nature Genet.1, 328–332 (1992). ArticleCASPubMed Google Scholar
Glaser, T., Walton, D.S. & Maas, R.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nature Genet.2, 232–238 (1992). ArticleCASPubMed Google Scholar
Walther, C. & Gruss, P. Pax-6, a murine paired-box gene, is expressed in the developing CNS. Development113, 1435–1449 (1991). CASPubMed Google Scholar
Epstein, J., Cai, J., Glaser, T., Jepeal, L. & Maas, R. Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformatlonal changes. J. biol. Chem.269, 8355–6361 (1994). CASPubMed Google Scholar
Mermod, N., O'Neill, E.A., Kelly, T.J. & Tjian, R. The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell58, 741–753 (1989). ArticleCASPubMed Google Scholar
Theill, L.E., Castrillo, J.-L., Wu, D. & Karin, M. Dissection of functional domains of the pituitary-specific transcription factor GHF-1. Nature342, 945–948 (1989). ArticleCASPubMed Google Scholar
Hogan, B.L.M. et al. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. exp. Morphol.97, 95–110 (1986). CASPubMed Google Scholar
Schmahl, W., Knoedlseder, M., Favor, J. & Davidson, D. Defects of neuronal migration and the pathogenesis of cortical malformations are associated with small eye (Sey) in the mouse, a point mutation at the Pax-6 locus. Acta Neuropathol.88, 126–135 (1993). Article Google Scholar
Edwards, J.G., Lampert, R.P., Hammer, M.E. & Young, S.R. Ocular defects and dysmorphic features in three generations. J. clin. Dysmorph.2, 8–12 (1984). Google Scholar
Czerny, T., Schaffner, G. & Busslinger, M. DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Devel.7, 2048–2061 (1993). ArticleCASPubMed Google Scholar
Cooper, D.N. & Youssoufian, H. The CpG dinucleotide and human genetic disease. Hum. Genet.78, 151–155 (1988). ArticleCASPubMed Google Scholar
Glaser, T. et al. PAX6 gene mutations in aniridia. In Molecular genetics of human ocular disorders (ed. Wiggs, J.) (Wiley, New York, in the press).
Carriere, C. et al. Charcterization of quail Pax-6 (Pax-QNR) proteins expressed in the neuroretina. Molec. cell. Biol.13, 7257–7266 (1993). ArticleCASPubMedPubMed Central Google Scholar
Chalepakis, G. et al. The molecular basis of the undulated/Pax-1 mutation. Cell66, 873–884 (1991). ArticleCASPubMed Google Scholar
Zannini, M., Francis-Lang, H., Plachov, D. & Di Lauro, R. Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters. Molec. cell. Biol.12, 4230–4241 (1992). ArticleCASPubMedPubMed Central Google Scholar
Adams, B. et al. Pax-5 encodes the transcription factor BSAP and is expressed In Blymphocytes, the devloping CNS and adult testis. Genes Dev.6, 1589–1607 (1993). Article Google Scholar
Fickenscher, H.R., Chalepakis, G. & Gruss, P. Murine Pax-2 protein is a sequence-specific trans-activator with expression in the genital system. DNA Cell Biol.12, 381–391 (1993). ArticleCASPubMed Google Scholar
Kozmik, Z., Kurzbauer, R., Dorfler, P. & Busslinger, M. Alternative splicing of Pax-8 gene transcripts is developmentally regulated and generates isoforms with different transactivation properties. Molec. cell. Biol.13, 6024–6035 (1993). ArticleCASPubMedPubMed Central Google Scholar
Plaza, S., Dozier, C. & Saule, S. Quail PAX-6 (PAX-QNR) encodes a transcription factor able to bind and trans-activate its own promoter. Cell Growth Differ.4, 1041–1050 (1993). CASPubMed Google Scholar
Matsuo, T. et al. A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nature Genet.3, 299–304 (1993). ArticleCASPubMed Google Scholar
Mackman, G., Brightbill, F.S. & Opitz, J.M. Comeal changes in aniridia. Am. J. Ophthalmol.87, 497–502 (1979). ArticleCASPubMed Google Scholar
Margo, C.E. Congenital aniridia: a histopathologic study of the anterior segment in children. J. Ped. Ophthalmol. Strabismus20, 192–198 (1983). CAS Google Scholar
Ton, C.C.T., Miwa, H. & Saunders, G.F. Small eye (Sey): Cloning and characterization of the murine homolog of the human aniridia gene. Genomics13, 251–256 (1992). ArticleCASPubMed Google Scholar
Hittner, H.M., Riccardi, V.M., Ferrell, R.E., Borda, R.R. & Justice, J. Variable expressivity in autosomal dominant aniridia by clinical, electrophysiology and anglographic criteria. Am. J. Ophthalmol.89, 531–539 (1980). ArticleCASPubMed Google Scholar
Duke-Elder, S. System of Ophthalmology, Congenital Deformities of the Eye, vol.III, part 2, pp. 415–429 and 488–495 (C. V. Mosby, St. Louis, 1964). Google Scholar
Rakic, P. Defects of neuronal migration and the pathogenesis of cortical malformations. Prog. brain Res.73, 15–37 (1988). ArticleCASPubMed Google Scholar
McConnell, S.K. The generation of neuronal diversity in the central nervous sytem. Annu. Rev. Neurosci.14, 269–300 (1991). ArticleCASPubMed Google Scholar
Altman, J. & Bayer, A. Horizontal compartmentation in the germinal matrices and intermediate zone of the embryonic rat cerebral cortex. Exp. Neurol.107, 36–47 (1990). ArticleCASPubMed Google Scholar
Dambly-Chaudiere, C. et al. The paired box gene pox neuro: A determinant of poly-innervated sense organs in Drosophila. Cell69, 159–172 (1992). ArticleCASPubMed Google Scholar
Stoykova, A. & Gruss, P. Roles of _Pax_-genes in developing and adult brain as suggested by expression patterns. J. Neurosci.14, 1395–1412 (1994). ArticleCASPubMedPubMed Central Google Scholar
Li, X. & Noll, M. Evolution of distinct developmental functions of three Drosophila genes by acquisition of different _cis_-regulatory regions. Nature367, 83–87 (1994). ArticleCASPubMed Google Scholar
Krauss, S., Maden, M., Holder, N. & Wilson, S.W. Zebratish pax[b] is Involved in the formation of the midbrain-hindbrain boundary. Nature380, 87–89 (1992). Article Google Scholar
Wright, D.K. & Manos, M.M. Sample preparation from paraffin-embedded tissues. In PCR protocols: a guide to methods and applications 153–158 (Academic Press, 1990). Google Scholar
Deng, W.P. & Nickoloff, J.A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem.200, 81–88 (1992). ArticleCASPubMed Google Scholar
Lillie, J.W. & Green, M.R. Transcription activation by the adenovirus E1a protein. Nature338, 39–44 (1989). ArticleCASPubMed Google Scholar
Ma, J. & Ptashne, M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell48, 847–853 (1987). ArticleCASPubMed Google Scholar
Gorman, C.M., Moffat, L.F. & Howard, B.H. Recombinant genomes which express chloramphenical acetyltransferase in mammalian cells. Molec. cell. Biol.2, 1044–1051 (1982). ArticleCASPubMedPubMed Central Google Scholar