X–linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein (original) (raw)
Darwin, C. The variation of animals and plants under domestication. 2nd edn. Vol II, 319. (John Murray, London, 1875). Google Scholar
McKusick, V.A., Mendelian in heritance in Man. 11th edn. (Johns Hopkins University Press, Baltimore, 1994). Google Scholar
Freire-Maia, N. & Pinheiro, M. Ectodermal dysplasias: a clinical and genetic study. (Alan R. Liss, New York, 1984).
Freire-Maia, N. & Pinheiro, M. Ectodermal dysplasias: a clinical classification and a causal review. Am. J. Med. Genet.53, 153–162 (1994). Article Google Scholar
Reed, W.B., Lopez, D.A. & Landing, B. Clinical spectrum of anhidrotic ectodermal dysplasia. Arch. Derm.102, 134–143 (1970). ArticleCAS Google Scholar
Kerr, C.B., Wells, R.S. & Cooper, K.E. Gene effect in carriers of anhidrotic ectodermal dysplasia. J. Med. Genet.3, 169–176 (1966). ArticleCAS Google Scholar
Kolvraa, S. et al. Close linkage between X-linked ectodermal dysplasia and a cloned DNA sequence detecting a two allele restriction fragment lenght polymorphism in the region Xp11-q12. Hum. Genet.74, 284–287
MacDermot, K.D., Winter, R.M. & Malcolm, S. Gene localization of X-linked hypohidrotic ectodermal dysplasia (C-S-T syndrome). Hum. Genet.74, 172–173 (1986). ArticleCAS Google Scholar
Clarke, A. et al. X-linked hypohidrotic ectodermal dysplasia: DNA probe linkage analysis and gene localization. Hum. Genet.75, 378–380 (1987). ArticleCAS Google Scholar
Hanauer, A. et al. Genetic mapping of anhidrotic ectodermal dysplasia: DXS159, a closely linked proximal marker. Hum. Genet.80, 177–180 (1988). ArticleCAS Google Scholar
Zonana, J. et al. X-linked hypohidrotic ectodermal dysplasia: localization within the region Xq11-21.1 by linkage analysis and implications for carrier detection and prenatal diagnostics. Am. J. Hum. Genet.43, 75–85 (1988). CASPubMedPubMed Central Google Scholar
Zonana, J. et al. High resolution mapping of the X-linked hypohidrotic ectodermal dysplasia locus. Am. J. Hum. Genet.51, 1036–1046 (1992). CASPubMedPubMed Central Google Scholar
Turleau, C. et al. X-linked hypohidrotic ectodermal dysplasia and t(X;12) in a female. Clin. Genet.35, 462–466 (1989). ArticleCAS Google Scholar
Limon, J. et al. X-linked anhidrotic ectodermal dysplasia and de novo t(X;1) in afemale. Hum. Genet.87, 338–340 (1991). ArticleCAS Google Scholar
Zonana, J. Hypohidrotic (anhidrotic) ectodermal dysplasia: Molecular genetic research and its clinical applications. Semin. Dermatol.12, 241–246 (1993). CASPubMed Google Scholar
Thomas, N.S.T. et al. Characterisation of molecular DNA rearrangements within the Xq12-q13.1 region, in three patients with X-linked hypohidrotic ectodermal dysplasia (EDA). Hum. Mol. Genet.10, 1679–1685 (1993). Article Google Scholar
Kere, J. et al. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes. Genomics16, 305–310 (1993). ArticleCAS Google Scholar
Srivastava, A.K. et al. Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed. Am. J. Hum. Genet.58, 126–132 (1996). CASPubMedPubMed Central Google Scholar
Zonana, J. et al. Detection of a molecular deletion at the DXS732 locus in a patient with X-linked hypohidrotic ectodermal dysplasia (EDA), with identification of a unique junctional fragment. Am. J. Hum. Genet.52, 78–84 (1993). CASPubMedPubMed Central Google Scholar
Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res.15, 8125–8148 (1987). ArticleCAS Google Scholar
Singer, S.J. The structure and insertion of integral proteins in membranes. Annu. Rev. Cell. Biol.6, 247–296 (1990). ArticleCAS Google Scholar
Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics5, 874–879 (1989). ArticleCAS Google Scholar
Pihlajaniemi, T. & Rehn, M. Two new collagen subgroups: membrane-associated collagens and types XV and XVII. Progr. Nucl. Acid Res. Mol. Biol.50, 225–262 (1995). ArticleCAS Google Scholar
Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell80, 603–609 (1995). ArticleCAS Google Scholar
Padgett, R.A., Grabowski, P.J., Konarska, M.M., Seller, S. & PA Splicing of messenger RNA pecursors. Annu. Rev. Biochem.55, 1119–1150 (1986). ArticleCAS Google Scholar
Kinniburgh, A.J., Maquat, L.E., Shedl,T., Rachmilewitz, E. & Ross, J. mRNA-deficient beta-thalassemia results from a single nucleotide deletion. Nucl. Acids Res.10, 5421–5427 (1982). ArticleCAS Google Scholar
Baserga, J.J. & Benz, E.J. Nonsense mutation in the human beta-globin gene affect mRNA metabolism. Proc. Natl. Acad. Sci. USA85, 2056–2060 (1988). ArticleCAS Google Scholar
Rogers, G.E. & Powell, B.C. Organization and expression of hair follicle genes. J. Invest. Dermatol.101, 50S–55S (1993). ArticleCAS Google Scholar
Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. LEF-1.A gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function. Genes Dev.5, 880–694 (1991). ArticleCAS Google Scholar
Giese, K., Cox, J. & Grosschedl, R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell69, 185–195 (1992). ArticleCAS Google Scholar
Zhou, P., Byrne, C., Jacobs, J. & Fuchs, E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev.9, 570–583 (1995). CAS Google Scholar
van Genderen, C. et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1 deficient mice. Genes Dev.8, 2691–2703 (1994). ArticleCAS Google Scholar
Falconer, D.S. A totally sex-linked gene in the house mouse. Nature169, 664–665 (1952). ArticleCAS Google Scholar
Blecher, S.R. Anhidrosis and absence of sweat glands in mice hemizygous for the Tabby gene: supportive evidence for the hypothesis of homology between Tabby and human anhidrotic (hypohidrotic) ectodermal dysplasia (Christ-Siemens-Touraine syndrome). J. Invest Dermatol.87, 720–722 (1986). ArticleCAS Google Scholar
Brockdorff, N., Kay, G., Cattanach, B.M. & Rastan, S. Molecular genetic analysis of the Ta25H deletion: evidence for additional deleted loci. Mammal. Genome1, 152–157 (1991). ArticleCAS Google Scholar
Blecher, S.R., Kapalanga, J. & Lalonde, D. Induction of sweat glands by epidermal growth factor in murine X-linked anhidrotic ectodermal dysplasia. Nature345, 542–544 (1990). ArticleCAS Google Scholar
Miettinen,R.J. et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature376, 337–341 (1995). ArticleCAS Google Scholar
Hardy, M.H. The secret life of the hair follicle. Trends Genet.8, 55–61 (1992). ArticleCAS Google Scholar
Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA88, 11261–11265 (1991). ArticleCAS Google Scholar
Genetics computer Group. Program Manual for the Wisconsin Package, Version 8. (Madison, Wisconsin, 1994).
Zonana, J. et al. Detection of de novo mutations and analysis of their origin in families with X-linked hypohidrotic ectodermal dysplasia. J. Med. Genet.31, 287–292 (1994). ArticleCAS Google Scholar
Peissel, B. et al. Small frame shift deletions within the COL4A5 gene in juvenile-onset Alport syndrome. Hum. Genet.92, 417–420 (1993). Article Google Scholar
Chromczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.163, 156–159 (1987). Google Scholar
Sambrook, J., Fritch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989). Google Scholar
Prosser, I.W. et al. Regional heterogeneity of elastin and collagen gene expression in intralobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am. J. Pathol.135, 1073–1088 (1989). CASPubMedPubMed Central Google Scholar
Saarialho-Kere, U.K. et al. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J. Clin. Invest.92, 2858–2866 (1993). ArticleCAS Google Scholar