A candidate gene for familial Mediterranean fever (original) (raw)
References
Daniels, M., Shohat, T., Brenner-Ulman, A. & Shohat, M., Familial Mediterranean fever: high gene frequency among the non-Ashkenazic and Ashkenazic Jewish populations in Israel. Am. J. Med. Genet.55, 311–314 (1995). ArticleCASPubMed Google Scholar
Rogers, D. et al. Familial Mediterranean fever in Armenians: autosomal recessive inheritance with high gene frequency. Am. J. Med. Genet.34, 168–172 (1995). Article Google Scholar
Aksentijevich, I. et al. Refined mapping of the gene causing familial Mediterranean fever, by linkage and homozygosity studies. Am. J. Hum. Genet.53, 451–461 (1993). CASPubMedPubMed Central Google Scholar
Levy, E. et al. Linkage disequilibrium mapping places the gene causing familial Mediterranean fever close to D16S246. Am. J. Hum. Genet.58, 523–534 (1996). CASPubMedPubMed Central Google Scholar
The French FMF Consortium. Localization of the familial Mediterranean fever gene (FMF) to a 250-kb interval in non-Ashkenazi Jewish founder haplotypes. Am. J. Hum. Genet.59, 603–612 (1996).
Sood, R. et al. Construction of a 1-Mb restriction-mapped cosmid contig containing the candidate region for the familial Mediterranean fever locus (MEFV) on chromosome 16p13.3. Genomics42, 83–95 (1997). ArticleCASPubMed Google Scholar
Datson, N. et al. Scanning for genes in large genomic regions: cosmid-based exon trapping of multiple exons in a single product. Nucleic Acids Res.24, 1105–1111 (1996). ArticleCASPubMedPubMed Central Google Scholar
Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature377, 3S–174S (1995). Google Scholar
Hiller, L., et al. Generation and analysis of 280,000 human sequence tags. Genome Res.6, 807–828 (1996). Article Google Scholar
Xu, Y., Mural, R., Shah, M. & Uberbacher, E. Recognizing exons in genomic sequence using GRAIL II. in Genetic Engineering: Principles and Methods. Vol 16 (ed. Setlow, J.) 241–253 (Plenum, New York, 1994). Google Scholar
Solovyev, V., Salamov, A. & Lawrence, C. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucleic Acids Res.22, 5156–5163 (1994). ArticleCASPubMedPubMed Central Google Scholar
Kulp, D., Haussler, D., Reese, M. & Eeckman, F. A generalized hidden Markov model for the recognition of human genes in DNA. in ISBM-96 (ed. AAAI) 134–142 (MIT Press, St. Louis, Missouri, 1996). Google Scholar
Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell65, 175–187 (1991). ArticleCASPubMed Google Scholar
Klug, A. & Rhodes, D. Zinc-fingers: a novel protein motif for nucleic acid recognition. Trends Biochem. Sci.12, 464–467 (1987). ArticleCAS Google Scholar
Takahashi, M. & Cooper, G. Ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol. Cell. Biol.7, 1378–1385 (1987). ArticleCASPubMedPubMed Central Google Scholar
Jack, J. & Mather, I. Cloning and analysis of cDNA encoding bovine butyrophilin, an apical glycoprotein expressed in mammary tissue and secreted in association with the milk-fat globule membrane during lactation. J. Biol. Chem.265, 14481–14486 (1990). CASPubMed Google Scholar
Patarca, R. et al. rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA85, 2733–2737 (1988). ArticleCASPubMedPubMed Central Google Scholar
Tsugu, H., Horowitz, R., Gibson, N. & Frank, M. The location of a disease-associated polymorphism and genomic structure of the human 52-kDa Ro/SSA locus (SSA1). Genomics24, 541–548 (1994). ArticleCASPubMed Google Scholar
Gouzy, J., Corpet, F. & Kahn, D. Graphical interface for ProDom domain families. Trends Biochem.21, 493 (1996). ArticleCAS Google Scholar
Newton, C. et al. Analysis of any point mutation in DNA: the amplification refractory mutation system (ARMS). Nucleic Acids Res.17, 2503–2516 (1989). ArticleCASPubMedPubMed Central Google Scholar
Dausset, J. et al. Program description: Centre d'Étude du Polymorphisme Humain (CEPH). Collaborative genetic mapping of the human genome. Genomics, 6, 575–578 (1990). ArticleCASPubMed Google Scholar
Almeida, M. et al. Haplotype analysis of common transthyretin mutations. Hum. Genet.96, 350–354 (1995). CASPubMed Google Scholar
Mott, R., Grigoriev, A., Maier, E., Hoheisel, J. & Lehrach, H. Algorithms and software tools for ordering clones libraries: application to the mapping of the genome of Schizosaccharomyces pombe. Nucleic Acids Res.21, 1965–1974 (1993). ArticleCASPubMedPubMed Central Google Scholar
Goguel, A., Pulcini, F., Danglot, G. & Fauvet, D. Mapping of 22 YACs on human chromosomes by FISH using yeast DNA Alu PCR products for competition. Ann. Genet.39, 64–68 (1996). CASPubMed Google Scholar
Roach, J., Boysen, C. & Hood, L. Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics26, 345–353 (1995). ArticleCASPubMed Google Scholar
Rosenberg, C. et al. High resolution DNA Fiber-FISH on yeast artificial chromosomes direct visualization of DNA replication. Nature Genet.10, 477–479 (1995). ArticleCASPubMed Google Scholar
Wiegant, J. et al. High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet.1, 587–591 (1992). ArticleCASPubMed Google Scholar
Rychlik, W. & Rhoads, R. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res.17, 8543–8551 (1989). ArticleCASPubMedPubMed Central Google Scholar