A candidate gene for familial Mediterranean fever (original) (raw)

References

  1. Daniels, M., Shohat, T., Brenner-Ulman, A. & Shohat, M., Familial Mediterranean fever: high gene frequency among the non-Ashkenazic and Ashkenazic Jewish populations in Israel. Am. J. Med. Genet. 55, 311–314 (1995).
    Article CAS PubMed Google Scholar
  2. Rogers, D. et al. Familial Mediterranean fever in Armenians: autosomal recessive inheritance with high gene frequency. Am. J. Med. Genet. 34, 168–172 (1995).
    Article Google Scholar
  3. Aksentijevich, I. et al. Refined mapping of the gene causing familial Mediterranean fever, by linkage and homozygosity studies. Am. J. Hum. Genet. 53, 451–461 (1993).
    CAS PubMed PubMed Central Google Scholar
  4. Levy, E. et al. Linkage disequilibrium mapping places the gene causing familial Mediterranean fever close to D16S246. Am. J. Hum. Genet. 58, 523–534 (1996).
    CAS PubMed PubMed Central Google Scholar
  5. The French FMF Consortium. Localization of the familial Mediterranean fever gene (FMF) to a 250-kb interval in non-Ashkenazi Jewish founder haplotypes. Am. J. Hum. Genet. 59, 603–612 (1996).
  6. Sood, R. et al. Construction of a 1-Mb restriction-mapped cosmid contig containing the candidate region for the familial Mediterranean fever locus (MEFV) on chromosome 16p13.3. Genomics 42, 83–95 (1997).
    Article CAS PubMed Google Scholar
  7. Datson, N. et al. Scanning for genes in large genomic regions: cosmid-based exon trapping of multiple exons in a single product. Nucleic Acids Res. 24, 1105–1111 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  8. Altschul, S. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS PubMed Google Scholar
  9. Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377, 3S–174S (1995).
    Google Scholar
  10. Hiller, L., et al. Generation and analysis of 280,000 human sequence tags. Genome Res. 6, 807–828 (1996).
    Article Google Scholar
  11. Xu, Y., Mural, R., Shah, M. & Uberbacher, E. Recognizing exons in genomic sequence using GRAIL II. in Genetic Engineering: Principles and Methods. Vol 16 (ed. Setlow, J.) 241–253 (Plenum, New York, 1994).
    Google Scholar
  12. Solovyev, V., Salamov, A. & Lawrence, C. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucleic Acids Res. 22, 5156–5163 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  13. Kulp, D., Haussler, D., Reese, M. & Eeckman, F. A generalized hidden Markov model for the recognition of human genes in DNA. in ISBM-96 (ed. AAAI) 134–142 (MIT Press, St. Louis, Missouri, 1996).
    Google Scholar
  14. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).
    Article CAS PubMed Google Scholar
  15. Klug, A. & Rhodes, D. Zinc-fingers: a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 12, 464–467 (1987).
    Article CAS Google Scholar
  16. Takahashi, M. & Cooper, G. Ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol. Cell. Biol. 7, 1378–1385 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  17. Jack, J. & Mather, I. Cloning and analysis of cDNA encoding bovine butyrophilin, an apical glycoprotein expressed in mammary tissue and secreted in association with the milk-fat globule membrane during lactation. J. Biol. Chem. 265, 14481–14486 (1990).
    CAS PubMed Google Scholar
  18. Bellini, M., Lacroix, J. & Gall, J. A putative zinc-binding protein on lampbrush chromosomes loops. EMBO J. 12, 107–114 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  19. Patarca, R. et al. rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 85, 2733–2737 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  20. Tsugu, H., Horowitz, R., Gibson, N. & Frank, M. The location of a disease-associated polymorphism and genomic structure of the human 52-kDa Ro/SSA locus (SSA1). Genomics 24, 541–548 (1994).
    Article CAS PubMed Google Scholar
  21. Gouzy, J., Corpet, F. & Kahn, D. Graphical interface for ProDom domain families. Trends Biochem. 21, 493 (1996).
    Article CAS Google Scholar
  22. Newton, C. et al. Analysis of any point mutation in DNA: the amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503–2516 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  23. Dausset, J. et al. Program description: Centre d'Étude du Polymorphisme Humain (CEPH). Collaborative genetic mapping of the human genome. Genomics, 6, 575–578 (1990).
    Article CAS PubMed Google Scholar
  24. Almeida, M. et al. Haplotype analysis of common transthyretin mutations. Hum. Genet. 96, 350–354 (1995).
    CAS PubMed Google Scholar
  25. Mott, R., Grigoriev, A., Maier, E., Hoheisel, J. & Lehrach, H. Algorithms and software tools for ordering clones libraries: application to the mapping of the genome of Schizosaccharomyces pombe. Nucleic Acids Res. 21, 1965–1974 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  26. Goguel, A., Pulcini, F., Danglot, G. & Fauvet, D. Mapping of 22 YACs on human chromosomes by FISH using yeast DNA Alu PCR products for competition. Ann. Genet. 39, 64–68 (1996).
    CAS PubMed Google Scholar
  27. Roach, J., Boysen, C. & Hood, L. Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics 26, 345–353 (1995).
    Article CAS PubMed Google Scholar
  28. Rosenberg, C. et al. High resolution DNA Fiber-FISH on yeast artificial chromosomes direct visualization of DNA replication. Nature Genet. 10, 477–479 (1995).
    Article CAS PubMed Google Scholar
  29. Wiegant, J. et al. High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet. 1, 587–591 (1992).
    Article CAS PubMed Google Scholar
  30. Bonfield, J.K., Smith, K.F. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  31. Rychlik, W. & Rhoads, R. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551 (1989).
    Article CAS PubMed PubMed Central Google Scholar

Download references