Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis (original) (raw)

References

  1. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).
    Article CAS PubMed Google Scholar
  2. Su, L.-K. et al. A germline mutation of the murine homolog of the APC gene causes multiple intestinal neoplasia. Science 256, 668–670 (1992).
    Article CAS PubMed Google Scholar
  3. Shoemaker, A.R., Gould, K.A., Luongo, C., Moser, A.R. & Dove, W.F. Studies of neoplasia in the Min mouse. Biochim. Biophys. Acta Rev. Cancer 1332, F25–F48 (1997).
    Article CAS Google Scholar
  4. Dietrich, W. et al. Genetic identification of Mom-1, a major modifier locus affecting _Min_-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).
    Article CAS PubMed Google Scholar
  5. Gould, K.A. et al. Genetic evaluation of candidate genes for the Moml modifier of intestinal neoplasia in mice. Genetics 144, 1777–1785 (1996).
    CAS PubMed PubMed Central Google Scholar
  6. MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81, 957–966 (1995).
    Article CAS PubMed Google Scholar
  7. Gould, K.A., Dietrich, W.F., Borenstein, N., Lander, E.S. & Dove, W.F. Mom1 is a semi-dominant modifier of the size and multiplicity of intestinal adenomas in Min mice. Genetics 144, 1769–1776 (1996).
    CAS PubMed PubMed Central Google Scholar
  8. Gould, K.A. & Dove, W.F. Action of Min and Mom1 on neoplasia in ectopic intestinal grafts. Cell Growth Diff. 7, 1361–1368 (1996).
    CAS PubMed Google Scholar
  9. Gould, K.A. & Dove, W.F. Localized action controlling intestinal neoplasia in mice. Proc. Natl. Acad. Sci. USA 94, 5848–5853 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  10. Tischfield, J.A. et al. Low-molecular-weight, calcium-dependent phospholipase A2 genes are linked and map to homologous chromosome regions in mouse and human. Genomics 32, 328–333 (1996).
    Article CAS PubMed Google Scholar
  11. Peeters, T. & Vantrappen, G. The paneth cell: a source of intestinal lysozyme. Gut 16, 553–558 (1975).
    Article CAS PubMed PubMed Central Google Scholar
  12. Rhodin, J.A.G. Histology: A Text and Atlas (Oxford University, New York, 1974).
    Google Scholar
  13. Oshima, M. et al. Suppression of intestinal polyposis in Apc_Æ716_ knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).
    Article CAS PubMed Google Scholar
  14. Reddy, S.T. & Herschman, H.R. Prostaglandin synthase-1 and prostaglandin synthase-2 are coupled to distinct phospholipases for the generation of prostaglandin D2 in activated mast cells. J. Biol. Chem. 272, 3231–3236 (1997).
    Article CAS PubMed Google Scholar
  15. Harwig, S.S.L. et al. Bactericidal properties of murine intestinal phospholipase A2 . J. Clin. Invest. 95, 603–610 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  16. Dove, W.F. et al. Intestinal neoplasia in the_Apc_ Min mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57, 812–814 (1997).
    CAS PubMed Google Scholar
  17. Dudley, M.E., Sundberg, J.P. & Roopenian, D.C. Frequency and histological appearance of adenomas in multiple intestinal neoplasia mice are unaffected by severe combined immunodeficiency (scid) mice. Int. J. Cancer 65, 249–253 (1996).
    Article CAS PubMed Google Scholar
  18. Tomlinson, I.P., Beck, N.E., Neale, K. & Bodmer, W.F. Variants at the secretory phospholipase A2 (PLA2G2a) locus: analysis of associations with familial adenomatous polyposis and sporadic colorectal tumors. Ann. Hum. Genet 60, 369–376 (1996).
    Article CAS PubMed Google Scholar
  19. Spirio, L.N. et al. Three secretory phospholipase A2 genes that map to human chromosome 1P35-36 are not mutated in individuals with attenuated adenomatous polyposis coli. Cancer Res. 56, 955–958 (1996).
    CAS PubMed Google Scholar
  20. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).
    CAS PubMed PubMed Central Google Scholar
  21. Hamilton, B.A. et al. The vibrator mutation causes neurodegeneration via reduced expression of PITPα: positional complementation cloning and extragenic suppression. Neuron 18, 711–722 (1997).
    Article CAS PubMed Google Scholar
  22. King, D.P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  23. Dove, W.F. Molecular genetics of Mus musculus: point mutations and millimorgans. Genetics 116, 5–8 (1987).
    CAS PubMed PubMed Central Google Scholar
  24. Altshul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic alignment search tool. J. Mol. Biol. 215, 403–410 (1996).
    Article Google Scholar
  25. Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).
    Google Scholar
  26. Halberg, R. & Kroos, L. Fate of the SpoIIID switch protein during Bacillus subtilis sporulation depends on mother-cell sigma factor, σk . J. Mol. Biol. 228, 840–849 (1992).
    Article CAS PubMed Google Scholar
  27. Wagle, A., Desai, S. & Deo, M.G. Immunohistochemical localization of ‘enhancing factor’, a novel growth modulator in the mouse intestines. Cell Biol. Int. Rep. 13, 309–312 (1989).
    Article CAS PubMed Google Scholar
  28. Mulherkar, R. et al. Enhancing factor protein from mouse small intestines belongs to the phospholipase A2 family. FEBS Lett. 317, 263–266 (1993).
    Article CAS PubMed Google Scholar
  29. Mulherkar, R., Desai, S.J., Rao, R.S., Wagle, A.S. & Deo, M.G. Expression of enhancing factor gene and its localization in mouse tissues. Histochemistry 96, 367–370 (1991).
    Article CAS PubMed Google Scholar

Download references