Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling (original) (raw)
Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev.11, 3286–3305 (1997). ArticleCASPubMed Google Scholar
Seidensticker, M.J. & Behrens, J. Biochemical interactions in the wnt pathway. Biochim. Biophys. Acta1495, 168–182 (2000). ArticleCASPubMed Google Scholar
Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell87, 159–170 (1996). ArticleCASPubMed Google Scholar
Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nature Rev. Cancer1, 55–67 (2001). ArticleCAS Google Scholar
Fodde, R. & Smits, R. Disease model: familial adenomatous polyposis. Trends Mol. Med.7, 369–373 (2001). ArticleCASPubMed Google Scholar
Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science256, 668–670 (1992). ArticleCASPubMed Google Scholar
Moser, A.R. et al. Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev. Dyn.203, 422–433 (1995). ArticleCASPubMed Google Scholar
Smits, R. et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev.13, 1309–1321 (1999). ArticleCASPubMedPubMed Central Google Scholar
Fodde, R. et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl Acad. Sci. USA91, 8969–8973 (1994). ArticleCASPubMedPubMed Central Google Scholar
Smits, R. et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology114, 275–283 (1998). ArticleCASPubMed Google Scholar
Fodde, R. & Khan, P.M. Genotype–phenotype correlations at the adenomatous polyposis coli (APC) gene. Crit. Rev. Oncog.6, 291–303 (1995). ArticleCASPubMed Google Scholar
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet.19, 379–383 (1998). ArticleCASPubMed Google Scholar
Boman, B.M., Fields, J.Z., Bonham-Carter, O. & Runquist, O.A. Computer modeling implicates stem cell overproduction in colon cancer initiation. Cancer Res.61, 8408–8411 (2001). CASPubMed Google Scholar
Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in _APC_−/− colon carcinoma. Science275, 1784–1787 (1997). ArticleCASPubMed Google Scholar
Hay, E.D. & Zuk, A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am. J. Kidney Dis.26, 678–690 (1995). ArticleCASPubMed Google Scholar
Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev.5, 1513–1523 (1991). ArticleCASPubMed Google Scholar
Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science282, 2072–2075 (1998). ArticleCASPubMed Google Scholar
Rudnicki, M.A. & McBurney, M.W. Cell culture methods and induction of differentiation of embryonal carcinoma cell lines. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.) 19–50 (IRL, Oxford, UK, 1987). Google Scholar
Kim, K., Pang, K.M., Evans, M. & Hay, E.D. Overexpression of β-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol. Biol. Cell11, 3509–3523 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wozney, J.M. et al. Novel regulators of bone formation: molecular clones and activities. Science242, 1528–1534 (1988). ArticleCASPubMed Google Scholar
Hollnagel, A., Oehlmann, V., Heymer, J., Ruther, U. & Nordheim, A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem.274, 19838–19845 (1999). ArticleCASPubMed Google Scholar
Hu, G., Lee, H., Price, S.M., Shen, M.M. & Abate-Shen, C. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development128, 2373–2384 (2001). CASPubMed Google Scholar
Chen, J. et al. Microarray analysis of Tbx2-directed gene expression: a possible role in osteogenesis. Mol. Cell. Endocrinol.177, 43–54 (2001). ArticleCASPubMed Google Scholar
Yamada, M., Revelli, J.P., Eichele, G., Barron, M. & Schwartz, R.J. Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev. Biol.228, 95–105 (2000). ArticleCASPubMed Google Scholar
Monaghan, A.P. et al. Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech. Dev.87, 45–56 (1999). ArticleCASPubMed Google Scholar
Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol.3, 433–438 (2001). ArticleCASPubMed Google Scholar
Morin, P.J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science275, 1787–1790 (1997). ArticleCASPubMed Google Scholar
Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nature Med.5, 1071–1075 (1999). ArticleCASPubMed Google Scholar
Smits, R. et al. Somatic Apc mutations are selected upon their capacity to inactivate the β-catenin downregulating activity. Genes Chromosomes Cancer29, 229–239 (2000). ArticleCASPubMed Google Scholar
Moser, A.R., Dove, W.F., Roth, K.A. & Gordon, J.I. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J. Cell Biol.116, 1517–1526 (1992). ArticleCASPubMed Google Scholar
Ryo, A., Nakamura, M., Wulf, G., Liou, Y.C. & Lu, K.P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nature Cell Biol.3, 793–801 (2001). ArticleCASPubMed Google Scholar