Zhou, G. et al. CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum. Mol. Genet.8, 2311–2316 (1999). ArticleCAS Google Scholar
Wang, Q. et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell87, 697–708 (1996). ArticleCAS Google Scholar
Sasaki, K. et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core-binding factor β. Proc. Natl Acad. Sci. USA93, 12359–12363 (1996). ArticleCAS Google Scholar
Kundu, M. et al. Role of Cbfb in hematopoiesis and perturbations resulting from expression of the leukemogenic fusion gene Cbfb_–_MYH11. Blood100, 2449–2456 (2002). ArticleCAS Google Scholar
Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell89, 755–764 (1997). ArticleCAS Google Scholar
Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell89, 765–771 (1997). ArticleCAS Google Scholar
Kagoshima, H., Akamatsu, Y., Ito, Y. & Shigesada, K. Functional dissection of the α and β subunits of transcription factor PEBP2 and the redox susceptibility of its DNA binding activity. J. Biol. Chem.271, 33074–33082 (1996). ArticleCAS Google Scholar
Miller, J.D., Stacy, T., Liu, P.P. & Speck, N.A. Core-binding factor β (CBFβ), but not CBFβ-smooth muscle myosin heavy chain, rescues definitive hematopoiesis in CBFβ-deficient embryonic stem cells. Blood97, 2248–2256 (2001). ArticleCAS Google Scholar
Kim, I.S., Otto, F., Zabel, B. & Mundlos, S. Regulation of chondrocyte differentiation by Cbfa1. Mech. Dev.80, 159–170 (1999). ArticleCAS Google Scholar
Zhang, Y.W. et al. A RUNX2/PEBP2α A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc. Natl Acad. Sci. USA97, 10549–10554 (2000). ArticleCAS Google Scholar
Harada, H. et al. Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Biol. Chem.274, 6972–6978 (1999). ArticleCAS Google Scholar
Otto, F., Kanegane, H. & Mundlos, S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum. Mutat.19, 209–216 (2002). ArticleCAS Google Scholar
Tahirov, T.H. et al. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFβ. Cell104, 755–767 (2001). ArticleCAS Google Scholar
Warren, A.J., Bravo, J., Williams, R.L. & Rabbitts, T.H. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFβ. EMBO J.19, 3004–3015 (2000). ArticleCAS Google Scholar
Thirunavukkarasu, K., Mahajan, M., McLarren, K.W., Stifani, S. & Karsenty, G. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfβ. Mol. Cell. Biol.18, 4197–4208 (1998). ArticleCAS Google Scholar
Prince, M. et al. Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J. Cell. Biochem.80, 424–440 (2001). ArticleCAS Google Scholar
Javed, A. et al. Runt homology domain transcription factors (Runx, Cbfa, and AML) mediate repression of the bone sialoprotein promoter: evidence for promoter context-dependent activity of Cbfa proteins. Mol. Cell. Biol.21, 2891–2905 (2001). ArticleCAS Google Scholar
Hanai, J. et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J. Biol. Chem.274, 31577–31582 (1999). ArticleCAS Google Scholar
Shirakabe, K., Terasawa, K., Miyama, K., Shibuya, H. & Nishida, E. Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells6, 851–856 (2001). ArticleCAS Google Scholar
Javed, A. et al. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBFα/AML/PEBP2α) dependent activation of tissue-specific gene transcription. J. Cell. Sci.113, 2221–2231 (2000). CASPubMed Google Scholar
D'Alonzo, R.C., Selvamurugan, N., Karsenty, G. & Partridge, N.C. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J. Biol. Chem.277, 816–822 (2002). ArticleCAS Google Scholar
Gutierrez, S. et al. CCAAT/enhancer-binding proteins (C/EBP) β and Δ activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J. Biol. Chem.277, 1316–1323 (2002). ArticleCAS Google Scholar
Speck, N.A. & Gilliland, D.G. Core-binding factors in haematopoiesis and leukaemia. Nature Rev. Cancer2, 502–513 (2002). ArticleCAS Google Scholar
Yoshida, T. et al. Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype–phenotype correlations. Am. J. Hum. Genet.71, 724–738 (2002). Article Google Scholar
Miller, J. et al. The core-binding factor β subunit is required for bone formation and hematopoietic maturation. Nature Genet.32, 645–649 (2002). ArticleCAS Google Scholar
Yoshida, C.A. et al. Core-binding factor β interacts with Runx2 and is required for skeletal development. Nature Genet.32, 633–638 (2002). ArticleCAS Google Scholar
St-Jacques, B., Hammerschmidt, M. & McMahon, A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev.13, 2072–2086 (1999). ArticleCAS Google Scholar
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell89, 747–754 (1997). ArticleCAS Google Scholar
Meyers, S., Lenny, N., Sun, W. & Hiebert, S.W. AML-2 is a potential target for transcriptional regulation by the t(8;21) and t(12;21) fusion proteins in acute leukemia. Oncogene13, 303–312 (1996). CASPubMed Google Scholar
Adya, N., Stacy, T., Speck, N.A. & Liu, P.P. The leukemic protein core-binding factor β (CBFβ)-smooth-muscle myosin heavy chain sequesters CBFα2 into cytoskeletal filaments and aggregates. Mol. Cell. Biol.18, 7432–7443 (1998). ArticleCAS Google Scholar
Banerjee, C. et al. Differential regulation of the two principal Runx2/Cbfa1 N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology142, 4026–4039 (2001). ArticleCAS Google Scholar