Refsum disease is caused by mutations in the phytanoyl–CoA hydroxylase gene (original) (raw)

References

  1. Refsum, S. Heredopathia atactica polyneuritiformis. Acta Psychiatr. Scand. (Suppl.) 38, 9–303 (1946).
    Google Scholar
  2. Steinberg, D. Refsum disease, in The Metabolic and Molecular Basis of Inherited Disease, 7th ed. (eds Scriver, C.R., Beaudet, A.L, Sly, W.S. & Valle, D.) 2351–2369 (McGraw-Hill, New York, 1995).
    Google Scholar
  3. Skjeldal, O.H., Stokke, O., Refsum, S., Norseth, J. & Petit, H. Clinical and biochemical heterogeneity in conditions with phytanic acid accumulation. J. Neurol. Sci. 77, 87–96 (1987).
    Article CAS Google Scholar
  4. Mihalik, S.J., Rainville, A.M. & Watkins, P.A. Phytanic acid α-oxidation in rat liver peroxisomes: production of α-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors. Eur. J. Biochem. 232, 545–551 (1995).
    Article CAS Google Scholar
  5. Jansen, G.A. et al. Phytanoyl-CoA hydroxylase is present in human liver, located in peroxisomes and deficient in Zellweger syndrome: direct, unequivocal evidence for the new, revised pathway of phytanic acid a-oxidation in humans. Biochem. Biophys. Res. Commun. 229, 205–210 (1996).
    Article CAS Google Scholar
  6. Croes, K., Casteels, M., De Hoffmann, E., Mannaerts, G.P. & Van Veldhoven, P.P. α-Oxidation of 3-methyl-substituted fatty acids in rat liver: production of formic acid instead of CO2, cofactor requirements, subcellular localization and formation of a 2-hydroxy-3-methylacyl-CoA intermediate. Eur. J. Biochem. 240, 674–683 (1996).
    Article CAS Google Scholar
  7. Jansen, G.A. et al. Phytanoyl-CoA hydroxylase is not only deficient in classical Refsum disease but also in rhizomelic chondrodysplasia punctata. J. Inherited Metab. Dis. 20, 444–446 (1997).
    Article CAS Google Scholar
  8. Jansen, G.A., Wanders, R.J.A., Watkins, P.A. & Mihalik, S.J. Phytanoyl–coenzyme A hydroxylase deficiency—the enzyme defect in Refsum's disease. N. Engl. J. Med. 337, 133–134 (1997).
    Article CAS Google Scholar
  9. Lazarow, P.B. & Moser, H.W. Disorders of peroxisome biogenesis, in The Metabolic and Molecular Basis of Inherited Disease, 7th ed. (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2287–2324 (McGraw-Hill, New York, 1995).
    Google Scholar
  10. Motley, A.M. et al. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nature Genet. 15, 377–380 (1997).
    Article CAS Google Scholar
  11. Purdue, P.E., Zhang, J.W., Skoneczny, M. & Lazarow, P.B. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nature Genet. 15, 381–384 (1997).
    Article CAS Google Scholar
  12. Braverman, N. et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nature Genet. 15, 369–375 (1997).
    Article CAS Google Scholar
  13. Waterham, H.R. & Cregg, J.M. Peroxisome biogenesis. Bioessays 19, 57–66 (1997).
    Article CAS Google Scholar
  14. Subramani, S. S. _PEX_genes on the rise. Nature Genet. 15, 331–333 (1997).
    Article CAS Google Scholar
  15. Purdue, P.E. & Lazarow, P.B. Peroxisomal biogenesis: multiple pathways of protein import. J Biol. Chem. 269, 30065–30068 (1994).
    CAS PubMed Google Scholar
  16. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  17. Kozak, M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 12, 857–872 (1984).
    Article CAS Google Scholar
  18. Swinkels, B.W., Gould, S.J., Bodnar, A.G., Rachubinski, R.A. & Subramani, S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoAthiolase. EMBO J. 10, 3255–3262 (1991).
    Article CAS Google Scholar
  19. De Vet, E.C.J.M., Zomer, A.W.M., Lahaut, G.J.H.T.J., & van den Bosch, H. Polymerase chain reaction-based cloning of alkyl-dihydroxyacetonephosphate synthase complementary DNA from guinea pig liver. J. Biol. Chem. 272, 798–803 (1997).
    Article CAS Google Scholar
  20. Osumi, T. et al. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181, 947–954 (1991).
    Article CAS Google Scholar
  21. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).
    Article CAS Google Scholar
  22. Ljlst, L., Wanders, R.J.A., Ushikubo, S., Kamijo, T., & Hashimoto, T. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the α-subunit of the mitochondria! trifunctional protein. Biochim. Biophys. Acta. 1215, 347–350 (1994).
    Article Google Scholar

Download references