Single pass sequencing and physical and genetic mapping of human brain cDNAs (original) (raw)

References

  1. Wilcox, A.S., Khan, A.S., Hopkins, J.A. & Sikela, J.M. Use of 3′ untranslated sequences of human cDNAs for rapid chromosome assignment and conversion to STSs: implications for an expression map of the genome. Nucl. Acids Res. 19, 1837–1843 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  2. Olson, M., Hood, L., Cantor, C. & Botstein, D. A common language for physical mapping of the human genome. Science 245, 1434–1435 (1989).
    Article CAS PubMed Google Scholar
  3. Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).
    Article CAS PubMed Google Scholar
  4. Adams, M.D. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).
    Article CAS PubMed Google Scholar
  5. Waterston, R. et al. A survey of expressed genes in Caenorhabditis elegans. Nature Genet. 1, 114–123 (1992).
    Article CAS PubMed Google Scholar
  6. McCombie, W.R. et al. Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nature Genet. 1, 124–131 (1992).
    Article CAS PubMed Google Scholar
  7. Polymeropoulos, M.H. et al. Chromosomal assignment of 46 brain cDNAs. Genomics 12, 492–496 (1992).
    Article CAS PubMed Google Scholar
  8. U.S. Department of Health and Human Services and U.S. Department of Energy. Understanding our genetic inheritance, the U.S. Human Genome Project: the first five years FY 1991–1995 (Department of Commerce, Springfield, Virginia, 1990).
  9. Human Genome News 2 (5) 9 (1991).
  10. Saiki, R. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).
    Article CAS PubMed Google Scholar
  11. Weber, J. & May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. hum. Genet. 44, 388–396 (1989).
    CAS PubMed PubMed Central Google Scholar
  12. Hamada, H., Petrino, M., Kakunaga, T., Seidman, M. & Stollar, B.D. Characterization of genomic poly(dT-dG).poly(dC-dA) sequences: structure, organization, and configuration. Molec. cell Biol. 4, 2610–2621 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  13. Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17, 6463–6471 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  14. Litt, M. & Luty, J.A. A hypervariable microsatellite revealed by in vitro amplificaton of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. hum. Genet. 44, 397–401 (1989).
    CAS PubMed PubMed Central Google Scholar
  15. Sutcliffe, J.G. mRNA in the mammalian central nervous system. Ann. Rev. Neurosci. 11, 157–198 (1988).
    Article CAS PubMed Google Scholar
  16. Verkerk, A. et al. Identification of a gene (FRM-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).
    Article CAS PubMed Google Scholar
  17. Kremer, E. et al. Mapping of DNA instability at the fragile X site to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714 (1991).
    Article CAS PubMed Google Scholar
  18. Fu, Y.-H. et al. Variations of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1–20 (1991).
    Article Google Scholar
  19. La Spada, A., Wilson, E., Lubahn, D., Harding, A. & Fischbeck, K. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).
    Article CAS PubMed Google Scholar
  20. Edwards, A., Civitello, A., Hammond, H. & Caskey, C. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. hum. Genet. 49, 746–756 (1991).
    CAS PubMed PubMed Central Google Scholar
  21. Wilcox, A.S. et al. Human chromosomal localization of genes encoding the γ1 and γ2 subunits of the γ-aminobutyric acid receptor indicates that members of this gene family are often clustered in the genome. Proc. natn. Acad. Sci. U.S.A. 89, 5857–5861 (1992).
    Article CAS Google Scholar
  22. Levitt, R. Polymorphisms in the transcribed 3′ untranslated region of eukaryotic genes. Genomics 11, 484–489 (1991).
    Article CAS PubMed Google Scholar
  23. Khan, A.S., Wilcox, A.S., Hopkins, J.A. & Sikela, J.M. Efficient double stranded sequencing of cDNA clones containing long poly (A) tails using anchored poly (dT) primers. Nucl. Acids Res. 19, 1715 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  24. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D. Basic local alignment search tool. J. molec. Biol. 215, 403 (1990).
    Article CAS PubMed Google Scholar
  25. Polymeropoulos, M., Rath, D., Xiao, H. & Merril, C. A simple sequence repeat polymorphism at the human growth hormone locus. Nucl. Acids Res. 19, 689 (1991).
    Article CAS PubMed PubMed Central Google Scholar

Download references