Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency (original) (raw)

References

  1. Keene, D.R., Engvall, E. & Glanville, R.W. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J. Cell Biol. 107, 1995–2006 (1988).
    Article CAS Google Scholar
  2. Bonaldo, P., Russo, V., Bucciotti, F., Doliana, R. & Colombatti, A. Structural and functional features of the α3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry 29, 1245–1254 (1990).
    Article CAS Google Scholar
  3. Timpl, R. & Chu, M.L. Microfibrillar collagen type VI. in Extracellular Matrix Assembly and Structure (eds. Yurchenco, P.D., Birk, D.E. & Mecham, R.P.) 208–242 (Academic, Orlando, 1994).
    Google Scholar
  4. Jöbsis, G.J. et al. Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat. Genet. 14, 113–115 (1996).
    Article Google Scholar
  5. Camacho Vanegas, O. et al. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc. Natl. Acad. Sci. USA 98, 7516–7521 (2001).
    Article CAS Google Scholar
  6. Bonaldo, P. et al. Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum. Mol. Genet. 7, 2135–2140 (1998).
    Article CAS Google Scholar
  7. Plant, D.R. & Lynch, G.S. Excitation-contraction coupling and sarcoplasmic reticulum function in mechanically skinned fibres from fast skeletal muscles of aged mice. J. Physiol. 543, 169–176 (2002).
    Article CAS Google Scholar
  8. Irwin, W. et al. Bupivacaine myotoxicity is mediated by mitochondria. J. Biol. Chem. 277, 12221–12227 (2002).
    Article CAS Google Scholar
  9. Nicholls, D.G. & Ward, M.W. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 23, 166–174 (2000).
    Article CAS Google Scholar
  10. D'hahan, N. et al. Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP. Proc. Natl. Acad. Sci. USA 96, 12162–12167 (1999).
    Article CAS Google Scholar
  11. Gugliucci, A. et al. Mitochondria are direct targets of the lipoxygenase inhibitor MK886. A strategy for cell killing by combined treatment with MK886 and cyclooxygenase inhibitors. J. Biol. Chem. 277, 31789–31795 (2002).
    Article CAS Google Scholar
  12. Bernardi, P., Petronilli, V., Di Lisa, F. & Forte, M. A mitochondrial perspective on cell death. Trends Biochem. Sci. 26, 112–117 (2001).
    Article CAS Google Scholar
  13. Griffiths, E.J. & Halestrap, A.P. Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Biochem. J. 274, 611–614 (1991).
    Article CAS Google Scholar
  14. Bowser, D.N., Minamikawa, T., Nagley, P. & Williams, D.A. Role of mitochondria in calcium regulation of spontaneously contracting cardiac muscle cells. Biophys. J. 75, 2004–2014 (1998).
    Article CAS Google Scholar
  15. Bowser, D.N., Petrou, S., Panchal, R.G., Smart, M.L. & Williams, D.A. Release of mitochondrial Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake. FASEB J. 16, 1105–1107 (2002).
    Article CAS Google Scholar
  16. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescent properties. J. Biol. Chem. 260, 3440–3450 (1985).
    CAS Google Scholar
  17. Zhao, F., Li, P., Chen, S.R., Louis, C.F. & Fruen, B.R. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. J. Biol. Chem. 276, 13810–13816 (2001).
    Article CAS Google Scholar
  18. Robert, V. et al. Alteration in calcium handling at the subcellular level in mdx myotubes. J. Biol. Chem. 276, 4647–4651 (2001).
    Article CAS Google Scholar
  19. Tews, D.S. Apoptosis and muscle fibre loss in neuromuscular disorders. Neuromuscul. Disord. 12, 613–622 (2002).
    Article CAS Google Scholar
  20. Klöhn, P.C. et al. Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proc. Natl. Acad. Sci. USA 100, 10014–10019 (2003).
    Article Google Scholar
  21. Blake, D.J., Weir, A., Newey, S.E. & Davies, K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291–329 (2002).
    Article CAS Google Scholar
  22. Howell, S.J. & Doane, K.J. Type VI collagen increases cell survival and prevents anti-β1 integrin-mediated apoptosis. Exp. Cell Res. 241, 230–241 (1998).
    Article CAS Google Scholar
  23. Rühl, M. et al. Soluble collagen VI drives serum-starved fibroblasts through S phase and prevents apoptosis via down-regulation of Bax. J. Biol. Chem. 274, 34361–34368 (1999).
    Article Google Scholar
  24. Werner, E. & Werb, Z. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J. Cell Biol. 158, 357–368 (2002).
    Article CAS Google Scholar
  25. Rossi, R., Bottinelli, R., Sorrentino, V. & Reggiani, C. Response to caffeine and ryanodine receptor isoforms in mouse skeletal muscles. Am. J. Physiol. 281, C595–C602 (2001).
    Article Google Scholar
  26. Germinario, E. el al. Early changes of type 2B fibers after denervation of rat EDL skeletal muscle. J. Appl. Physiol. 92, 2045–2052 (2002).
    Article Google Scholar

Download references