Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader–Willi syndrome region (original) (raw)

References

  1. Guthrie, C. Messenger RNA splicing in yeast: Clues to why the spliceosome is a ribonucleoprotein. Science 253, 157–163 (1991).
    Article CAS PubMed Google Scholar
  2. Luhrmann, R., Kastner, B. & Bach, M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim. Biophys. Acta 1087, 265–292 (1990).
    Article CAS PubMed Google Scholar
  3. Steitz, J.A. et al. Function of the abundant U-snRNPs. In Structure and function of Major and Minor Small Nuclear Ribonuclear Ribonucleoprotein Particles (ed. Birnstiel, M.L) 115–154 (Springer-Verlag, New York, 1990).
    Google Scholar
  4. Lerner, M.R. & Steitz, J.A. Antibodies to small nuclear RNAs complexed with proteins are produced by pateints with systemic lupus erythematosus. Proc. natn. Acad. Sci. U.S.A. 76, 5495–5499 (1979).
    Article CAS Google Scholar
  5. McAllister, G., Amara, S.G. & Lerner, M.R. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N. Proc. natn. Acad. Sci. U.S.A. 85, 5296–5300 (1988).
    Article CAS Google Scholar
  6. McAllister, G., Roby-Shemkovitz, A., Amara, S.G. & Lerner, M.R. cDNA sequence of the rat U snRNP-associated protein N: Description of a potential Sm epitope. EMBO J. 8, 1177–1181 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  7. Li, S., Klein, E.S., Russo, A.F., Simmons, D.M. & Rosenfeld, M.G. Isolation of cONA clones encoding small nuclear ribonucleoparticle-associated proteins with different tissue specificities. Proc. natn. Acad. Sci. U.S.A. 86, 9778–9782 (1989).
    Article CAS Google Scholar
  8. Schmauss, C. & Lerner, M.R. The closely related small nuclear ribonucleoprotein polypeptides N and B/B' are distinguishable by antibodies as well as by differences in their rmRNAs and gene structures. J. biol. Chem. 265, 10733–10739 (1990).
    CAS PubMed Google Scholar
  9. Schmauss, C., McAllister, G., Ohosone, Y., Hardin, J.A. & Lerner, M.R. A comparison of snRNP-associated Sm-autoantigens: human N, rat N, and human B/B'. Nucl. Acids Res. 17, 1733–1743 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  10. Sharpe, N.G., Williams, D.G. & Latchman, D.S. Regulated expression of the small nuclear ribonucleoprotein particle protein SmN in embryonic stem cell differentiation. Molec. cell. Biol. 10, 6817–6820 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  11. Nicholls, R.D., Gottleib, W., Avidano, K., Williams, C.A. & Driscoll, D. Mouse chromosome mapping of clones from the PWS/AS genetic region. Mouse Genome 89, 254 (1991).
    Google Scholar
  12. Chaillet, J.R., Knoll, J.H.M., Horsthemke, B. & Lalande, M. The syntenic relationship between the critical deletion region for the Prader-Willi/Angleman syndromes and proximal mouse chromosome 7. Genomics 11, 773–776 (1991).
    Article CAS PubMed Google Scholar
  13. Wagstaff, J., Chaillet, J.R. & Lalande, M. The GABAA receptor β3 subunit gene: Characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7. Genomics 11, 1071–1078 (1991).
    Article CAS PubMed Google Scholar
  14. Özçelik, T. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).
    Article PubMed Google Scholar
  15. Ledbetter, D.H. et al. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. New Engl. J. Med. 304, 325–329 (1981).
    Article CAS PubMed Google Scholar
  16. Nicholls, R.D. et al. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342, 281–285 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  17. Hall, J.G. Genomic imprinting: review and relevance to human diseases. Am. J. hum. Genet. 46, 857–873 (1990).
    CAS PubMed PubMed Central Google Scholar
  18. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).
    Article CAS PubMed Google Scholar
  19. Copeland, N.G. & Jenkins, N.A. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7, 113–118 (1991).
    Article CAS PubMed Google Scholar
  20. Nakatsu, Y., Gondo, Y. & Brilliant, M.H. The ρ locus is closely linked to the mouse homolog of a gene from the Prader-Willi chromosomal region. Mammal. Genome 2, 69–71 (1992).
    Article CAS Google Scholar
  21. Lalande, M., Nicholls, R.D. & Knoll, J.H.M. A cDNA from proximal human chromosome 15q maps near Mtv-1 on mouse chromosome 7. Mouse News Lett. 84, 87–88 (1989).
    Google Scholar
  22. Gardner, J.M. et al. The mouse pink-eyed dilution gene: association with human Prader-Willi and Angelman syndromes. Science 257, 1121–1124 (1992).
    Article CAS PubMed Google Scholar
  23. Donlon, T.A., Lalande, M., Wyman, A., Bruns, G. & Latt, S.A. Isolation of molecular probes associated with chromosome 15 instability in the Prader-Willi syndrome. Proc. natn. Acad. Sci. U.S.A. 83, 4408–4412 (1989).
    Article Google Scholar
  24. Knoll, J.H.M. et al. Angelman syndrome: Three molecular classes identified with chromosome 15q11q13-specific DMA markers. Am. J. hum. Genet. 47, 149–155 (1990).
    CAS PubMed PubMed Central Google Scholar
  25. Nicholls, R.D. et al. Restriction fragment length polymorphisms within proximal 15q and their use in molecular cytogenetics and the Prader-Willi Syndrome. Am. J. med. Genet. 33, 66–77 (1989).
    Article CAS PubMed Google Scholar
  26. Tantravahi, U. et al. Quantitative calibration and use of DMA probes for investigating chromosome abnormalities in the Prader-Willi syndrome. Am. J. med. Genet. 33, 78–87 (1989).
    Article CAS PubMed Google Scholar
  27. Wagstaff, J. et al. Localization of the gene encoding the GABAA receptor β3 subunit to the Angelman/Prader-Willi region of human chromosome 15. Am. J. hum. Genet. 49, 330–337 (1991).
    CAS PubMed PubMed Central Google Scholar
  28. Cattanach, B.M. & Beechey, C.V. Autosomal and X-chromosome imprinting. Development Suppl. 63–72 (1990).
  29. Barlow, D.P. et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).
    Article CAS PubMed Google Scholar
  30. Dechiara, T.M., Robertson, E.J. & Efstradiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).
    Article CAS PubMed Google Scholar
  31. Zemel, S., Bartolomei, M.S. & Tilghman, S.M. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nature Genet. 2, 61–65 (1992).
    Article CAS PubMed Google Scholar
  32. Cattanach, B.M. et al. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nature Genet. 2, 270–274 (1992).
    Article CAS PubMed Google Scholar
  33. Saitoh, S. et al. Familial Angleman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor β3 subunit gene. Lancet 339, 366–367 (1992).
    Article CAS PubMed Google Scholar
  34. Wagstaff, J. et al. Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294 (1992).
    Article CAS PubMed Google Scholar
  35. Bartolomei, M.S. & Tilghman, S.M. Parental imprinting of mouse chromosome 7. Sem. devl. Biol. 3, 107–117 (1992).
    Google Scholar
  36. Prader, A., Labhart, A. & Willi, H. Ein syndrom von Adipositas, kleinwuchs, kryptochismus und ologophrenie nach myotonieartigem zustand in neugeborenalter. Schweiz. Med. Wochenschr. 86, 1260–1261 (1956).
    Google Scholar
  37. Rosenfeld, M.G. et al. Production of novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304, 129–135 (1983).
    Article CAS PubMed Google Scholar
  38. Krahn, D.D., Gosnell, B.A., Levine, A.S. & Morley, J.E. Effects of calcitonin gene-related peptide on food intake. Peptide 5, 861–864 (1984).
    Article CAS Google Scholar
  39. Goodman, E.C. & Iversen, L.L. Calcitonin gene related peptide: Novel peptide. Life Sci. 38, 2169–2178 (1986).
    Article CAS PubMed Google Scholar
  40. Delsert, C.D. & Rosenfeld, M.G. A tissue-specific small nuclear ribonucleoprotein and the regulated splicing of the calcitonin/calcitonin gene-related protein transcript. J. biol. Chem. 267, 14573–14579 (1992).
    CAS PubMed Google Scholar
  41. Schmauss, C., Brines, M.L. & Lerner, M.R. The gene encoding the small nuclear ribonucleoprotein-associated protein N is expressed at high levels in neurons. J. biol. Chem. 267, 8521–8529 (1992).
    CAS PubMed Google Scholar
  42. Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49 (1991).
    Article CAS PubMed Google Scholar
  43. Jenkins, N.A., Copeland, N.G., Taylor, B.A. & Lee, B.K. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43, 26–36 (1982).
    CAS PubMed PubMed Central Google Scholar
  44. Copeland, N.G., Gilbert, D.J., Chretien, M., Seidah, N.G. & Jenkins, N.A. Regional localization of three convertases, PC1 (Nec-1), PC2 (Nec-2), and Furin (Fur), on mouse chromosomes. Genomics 13, 1356–1358 (1992).
    Article CAS PubMed Google Scholar
  45. Pritchard, M.A. et al. The interleukin-4 receptor gene (IL4R) maps to 16p11.2-16p12.1 in human and to the distal region of mouse chromosome 7. Genomics 10, 801–806 (1991).
    Article CAS PubMed Google Scholar
  46. Davis, R.L., Weintraub, H. & Lassar, A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).
    Article CAS PubMed Google Scholar
  47. Brilliant, M.H., Gondo, Y. & Eicher, E.M. Direct identification of the mouse pink-eyed unstable mutation by genome scanning. Science 252, 566–569 (1991).
    Article CAS PubMed Google Scholar
  48. Ceci, J.D., Kingsley, D.M., Silan, C.M., Copeland, N.G. & Jenkins, N.A. An interspecific backcross linkage map of the proximal half of mouse chromosome 14. Genomics 6, 673–678 (1990).
    Article CAS PubMed Google Scholar
  49. Haefliger, J.-A. et al. Four novel members of the connexin family of gap junction proteins. J. biol. Chem. 267, 2057–2064 (1992).
    CAS PubMed Google Scholar
  50. Green, E.L. Genetics and Probability in Animal Breeding Experiments (Oxford University Press, New York, 1981).
    Book Google Scholar
  51. Winter, E., Yamamoto, F., Almoguera, C. & Purucho, M. A method to detect and characterize point mutations in transcribed genes: Amplification and over expression of the mutant c-Ki-ras allele in human tumor cells. Proc. natn. Acad. Sci. U.S.A. 82, 7575–7579 (1985).
    Article CAS Google Scholar
  52. Chomczynski, P. & Sacchi, N. Single step method of RNA isolation by acid guanidinium thiocyanates-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).
    Article CAS PubMed Google Scholar

Download references