Michalowitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and cell proliferation by a temperature-sensitive mutant of p53. Cell62, 671–680 (1990). Article Google Scholar
Bradbury, A., Possenti, R., Shooter, E.M. & Tirone, F. Molecular cloning of PCS, a putatively secreted protein whose mRNA is induced by nerve growth factor and depolarization. Proc. Natl. Acad. Sci. USA88, 3353–3357 (1991). ArticleCASPubMedPubMed Central Google Scholar
Fletcher, B.S. et al. Structure and expression of TIS21, a primary response gene induced by growth factors and tumor promoters. J. Biol. Chem.266, 14511–14518 (1991). CASPubMed Google Scholar
Varnum, B.C., Reddy, S.T., Koski, R.A. & Herschman, H.R. Synthesis, degradation, and subcellular localization of proteins encoded by the primary response genes TIS7/PC4 and TIS21/PC3. J. Cell. Physiol.158, 205–213 (1994). ArticleCASPubMed Google Scholar
Matsuda, A. et al. Tob, a novel protein that interacts with p185erbB2, is associated with antiproliferative activity. Oncogene12, 705–713 (1996). CASPubMed Google Scholar
Savatier, P., Huang, S., Szekely, L., Wiman, K.G. & Samarut, J. Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene9, 809–818 (1994). CASPubMed Google Scholar
Rao, P.N. in Effects of Drugs on the Cell Nucleus. 475–490 (eds Busch, H., Crooke, S.T. & Daskal, Y.) (Academic Press, New York, 1979). Google Scholar
Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DMA damage. Cancer Res.51, 6304–6311 (1991). CASPubMed Google Scholar
Fields, S. & Jang, S.K. Presence of a potent transcription activating sequence in the p53 protein. Science249, 1046–1049 (1990). ArticleCASPubMed Google Scholar
Raycroft, L., Wu, H. & Lozano, G. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science249, 1049–1051 (1990). ArticleCASPubMedPubMed Central Google Scholar
Shaw, P. et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA89, 4495–4499 (1992). ArticleCASPubMedPubMed Central Google Scholar
El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell75, 817–825 (1993). ArticleCASPubMed Google Scholar
El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W. & Vogelstein, B. Definition of a consensus binding site for p53. Nature Genet.1, 45–49 (1992). ArticleCASPubMed Google Scholar
El-Deiry, W.S. et al. Topological control of P21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res.55, 2910–2919 (1995). CASPubMed Google Scholar
Weinert, T.A., & Hartwell, L.H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae . Science241, 317–322 (1988). ArticleCASPubMed Google Scholar
Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature362, 849–852 (1993). ArticleCASPubMed Google Scholar
Wang, X.W. et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genet.10, 188–194 (1995). ArticleCASPubMed Google Scholar
Stewart, N., Hicks, G.G., Paraskevas, F. & Mowat, M. Evidence for a second cell cycle block at G2/M by p53. Oncogene10, 109–116 (1995). CASPubMed Google Scholar
Aloni-Grinstein, R., Schwartz, D. & Rotter, V. Accumulation of wild-type p53 protein upon γ-irradiation induces a G2 arrest-dependent immunoglobulin κ light chain gene expression. EMBO J.14, 1392–1401 (1995). ArticleCASPubMedPubMed Central Google Scholar
Vikhanskaya, F., Erba, E., D'lncalci, M. & Broggini, M. Introduction of wildtype p53 in a human ovarian cancer cell line not expressing endogenous p53. Nucl. Acids Res.22, 1012–1017 (1994). ArticleCASPubMedPubMed Central Google Scholar
Agarwal, M.L., Agarwal, A., Taylor, W.R. & Stark, G.R. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. USA92, 8493–8497 (1995). ArticleCASPubMedPubMed Central Google Scholar
Powell, S.N. et al. Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res.55, 1643–1648 (1995). CASPubMed Google Scholar
Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell82, 675–684 (1995). ArticleCASPubMed Google Scholar
Waldman, T., Kinzler, K.W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res.55, 5187–5190 (1995). CASPubMed Google Scholar
Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature377, 552–557 (1995). ArticleCASPubMed Google Scholar
Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356, 215–221 (1992). ArticleCASPubMed Google Scholar
Noda, A., Ning, Y., Venable, S.F., Pereira-Smith, O.M. & Smith, J.R. Cloning of senescent cell-derived inhibitors of DMA synthesis using an expression screen. Exp. Cell Res.211, 90–98 (1994). ArticleCASPubMed Google Scholar
Hensler, P.J., Annab, L.A., Barrett, J.C & Pereira-Smith, O.M. A gene involved in control of human cellular senescence on human chromosome 1q. Mol. Cell. Biol.14, 291–2297 (1994). Article Google Scholar
Paraskeva, C., Finerty, S. & Powell, S. Immortalization of a human colorectal adenoma cell line by continuous in vitro passage: possible involvement of chromosome 1 in tumour progression. Int. J. Cancer41, 908–912 (1988). ArticleCASPubMed Google Scholar
Mathew, C.G. et al. Deletion of genes on chromosome 1 in endocrine neoplasia. Nature328, 524–526 (1987). ArticleCASPubMed Google Scholar
Chen, L.-C., Dollbaum, C. & Smith, H.S. Loss of heterozygosity on chromosome 1q in human breast cancer. Proc. Natl. Acad. Sci. USA86, 7204–7207 (1989). ArticleCASPubMedPubMed Central Google Scholar
Cherif, D. et al. Simultaneous localization of cosmids and chromosome R-banding by fluorescence microscopy: application to regional mapping of human chromosome 11. Proc. Natl. Acad. Sci. USA87, 6639–6643 (1990). ArticleCASPubMedPubMed Central Google Scholar
Frebourg, T. et al. A functional screen for germ-line p53 mutations based on transcriptional activation. Cancer Res.52, 6976–6978 (1992). CASPubMed Google Scholar
Baker, S.J., Markowitz, S., Fearon, E.R., Wilson, J.K.W. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science249, 912–915 (1990). ArticleCASPubMed Google Scholar
Miyashita, T., Harigai, M., Hanada, M. & Reed, J.C. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res.54, 3131–3135 (1994). CASPubMed Google Scholar
Takahashi, K., Sumimoto, H., Suzuki, K. & Ono, T. Protein-synthesis-dependent cytoplasmic translocation of p53 protein after serum stimulation of growth arrested MCF-7 cells. Mol. Carcinog.8, 58–66 (1993). ArticleCASPubMed Google Scholar
Casey, G., Lo-Hsueh, M., Lopez, M.E., Vogelstein, B. & Stanbridge, E.J. Growth suppression of human breast cancer cells by the introduction of a wild-type p53 gene. Oncogene6, 1791–1797 (1991). CASPubMed Google Scholar
Puisieux, A. et al. Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines. FASEB J.7, 1407–1413 (1993). ArticleCASPubMed Google Scholar
Bartek, J., Iggo, R., Gannon, J. & Lane, D.P. Genetic and immunohistochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene5, 893–899 (1990). CASPubMed Google Scholar
Bressac, B. et al. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA87, 1973–1977 (1990). ArticleCASPubMedPubMed Central Google Scholar