Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops (original) (raw)

References

  1. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).
    Article CAS Google Scholar
  2. Ferguson-Smith, A.C. & Surani, M.A. Imprinting and the epigenetic asymmetry between parental genomes. Science 293, 1086–1089 (2001).
    Article CAS Google Scholar
  3. Sleutels, F. & Barlow, D.P. The origins of genomic imprinting in mammals. Adv. Genet. 46, 119–163 (2002).
    Article CAS Google Scholar
  4. Verona, R.I., Mann, M.R. & Bartolomei, M.S. Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu. Rev. Cell Dev. Biol. 19, 237–259 (2003).
    Article CAS Google Scholar
  5. Fournier, C. et al. Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J. 21, 6560–6570 (2002).
    Article CAS Google Scholar
  6. Hark, A.T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).
    Article CAS Google Scholar
  7. Bell, A.C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).
    Article CAS Google Scholar
  8. Kanduri, C. et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10, 853–856 (2000).
    Article CAS Google Scholar
  9. Szabo, P., Tang, S.H., Rentsendorj, A., Pfeifer, G.P. & Mann, J.R. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol. 10, 607–610 (2000).
    Article CAS Google Scholar
  10. Constancia, M. et al. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat. Genet. 26, 203–206 (2000).
    Article CAS Google Scholar
  11. Eden, S. et al. An upstream repressor element plays a role in Igf2 imprinting. EMBO J. 20, 3518–3525 (2001).
    Article CAS Google Scholar
  12. Murrell, A. et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep. 2, 1101–1106 (2001).
    Article CAS Google Scholar
  13. Leighton, P.A., Saam, J.R., Ingram, R.S., Stewart, C.L. & Tilghman, S.M. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9, 2079–2089 (1995).
    Article CAS Google Scholar
  14. Kaffer, C.R., Grinberg, A. & Pfeifer, K. Regulatory mechanisms at the mouse Igf2/H19 locus. Mol. Cell. Biol. 21, 8189–8196 (2001).
    Article CAS Google Scholar
  15. Davies, K. et al. Disruption of mesodermal enhancers for Igf2 in the minute mutant. Development 129, 1657–1668 (2002).
    CAS PubMed Google Scholar
  16. Weber, M. et al. Genomic imprinting controls matrix attachment regions in the Igf2 gene. Mol. Cell. Biol. 23, 8953–8959 (2003).
    Article CAS Google Scholar
  17. Sasaki, H., Ishihara, K. & Kato, R. Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and long-distance gene regulation. J. Biochem. 127, 711–715 (2000).
    Article CAS Google Scholar
  18. Lopes, S. et al. Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum. Mol. Genet. 12, 295–305 (2003).
    Article CAS Google Scholar
  19. Banerjee, S., Smallwood, A., Lamond, S., Campbell, S. & Nargund, G. Igf2/H19 imprinting control region (ICR): an insulator or a position-dependent silencer? Scientific World J. 1, 218–224 (2001).
    Article CAS Google Scholar
  20. Yusufzai, T.M., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 13, 291–298 (2004).
    Article CAS Google Scholar
  21. Moore, T. et al. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc. Natl. Acad. Sci. USA 94, 12509–12514 (1997).
    Article CAS Google Scholar
  22. Feil, R., Walter, J., Allen, N.D. & Reik, W. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120, 2933–2943 (1994).
    CAS PubMed Google Scholar
  23. Thorvaldsen, J.L., Duran, K.L. & Bartolomei, M.S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702 (1998).
    Article CAS Google Scholar
  24. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).
    Article CAS Google Scholar
  25. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).
    Article CAS Google Scholar
  26. Evan, G.I., Lewis, G.K., Ramsay, G. & Bishop, J.M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).
    Article CAS Google Scholar
  27. Labrador, M. & Corces, V.G. Setting the boundaries of chromatin domains and nuclear organisation. Cell 111, 151–154 (2002).
    Article CAS Google Scholar
  28. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).
    Article Google Scholar
  29. Chubb, J.R. & Bickmore, W.A. Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112, 403–406 (2003).
    Article CAS Google Scholar
  30. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626 (2002).
    Article CAS Google Scholar

Download references