Mutations in embryonic myosin heavy chain (MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome (original) (raw)
Bamshad, M., Bohnsack, J.F., Jorde, L.B. & Carey, J.C. Distal arthrogryposis type 1: clinical analysis of a large kindred. Am. J. Med. Genet.65, 282–285 (1996). ArticleCAS Google Scholar
Bamshad, M., Jorde, L.B. & Carey, J.C. A revised and extended classification of the distal arthrogryposes. Am. J. Med. Genet.65, 277–281 (1996). ArticleCAS Google Scholar
Hall, J.G., Reed, S.C. & Greene, G. The distal arthrogryposes: delineation of new entities - review and nosologic discussion. Am. J. Med. Genet.11, 185–239 (1982). ArticleCAS Google Scholar
Krakowiak, P.A. et al. A variant of Freeman-Sheldon syndrome maps to 11p15.5-pter. Am. J. Hum. Genet.60, 426–432 (1997). CASPubMedPubMed Central Google Scholar
Freeman, E.A. & Sheldon, J.H. Cranio-carpo-tarsal dystrophy: an undescribed congenital malformation. Arch. Dis. Child.13, 277 (1938). ArticleCAS Google Scholar
Hall, J.G. Arthrogryposes. in Principles and Practice of Medical Genetics (eds. Emery, A.E.H. & Rimoin, D.L.) 989–1035 (Churchill Livingstone, Edinburgh, 1992). Google Scholar
Burian, F. The “whistling face” characteristic in a compound cranio-facio-corporal syndrome. Br. J. Plast. Surg.16, 140–143 (1963). ArticleCAS Google Scholar
Stevenson, D.A. et al. Clinical characteristics and natural history of Freeman-Sheldon syndrome. Pediatr.117, 754–762 (2006). Article Google Scholar
Sung, S.S. et al. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am. J. Hum. Genet.72, 681–690 (2003). ArticleCAS Google Scholar
Sung, S.S. et al. Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am. J. Hum. Genet.73, 212–214 (2003). Article Google Scholar
Veugelers, M. et al. Mutation of perinatal myosin heavy chain associated with a Carney complex variant. N. Engl. J. Med.351, 460–469 (2004). ArticleCAS Google Scholar
Allingham, J.S., Smith, R. & Rayment, I. The structural basis of blebbistatin inhibition and specificity for myosin II. Nat. Struct. Mol. Biol.12, 378–379 (2005). ArticleCAS Google Scholar
Wallgren-Pettersson, C. et al. Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle α-actin. Neuromuscul. Disord.14, 461–470 (2004). Article Google Scholar
Agrawal, P.B. et al. Heterogeneity of nemaline myopathy cases with skeletal muscle α-actin gene mutations. Ann. Neurol.56, 86–96 (2004). ArticleCAS Google Scholar
Seidman, J.G. & Seidman, C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell104, 557–567 (2001). ArticleCAS Google Scholar
Richard, P. et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation107, 2227–2232 (2003). Article Google Scholar
Tajsharghi, H. et al. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann. Neurol.54, 494–500 (2003). ArticleCAS Google Scholar
Meredith, C. et al. Mutations in the slow skeletal muscle fiber myosin heavy chain (MYH7) cause Laing early onset distal myopathy (MPD1). Am. J. Hum. Genet.75, 703–708 (2004). ArticleCAS Google Scholar
Martinsson, T. et al. Autosomal dominant myopathy: Missense mutation (Glu-706 3 Lys) in the myosin heavy chain IIa gene. Proc. Natl. Acad. Sci. USA97, 14614–14619 (2000). ArticleCAS Google Scholar
Karsch-Mizrachi, I., Travis, M., Blau, H. & Leinwald, L.A. Expression and DNA sequence analysis of a human embryonic skeletal muscle myosin heavy chain gene. Nucleic Acids Res.17, 6167–6179 (1989). ArticleCAS Google Scholar
Eller, M. et al. Human embryonic myosin heavy chain cDNA. Interspecies sequence conservation of the myosin rod, chromosomal locus and isoform specific transcription of the gene. FEBS Lett.256, 21–28 (1989). ArticleCAS Google Scholar
Wells, L., Edwards, K.A. & Bernstein, S.I. Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J.15, 4454–4459 (1996). ArticleCAS Google Scholar
Swank, D.M. et al. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J. Biol. Chem.276, 15117–15124 (2001). ArticleCAS Google Scholar
Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science261, 58–65 (1993). ArticleCAS Google Scholar
Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science261, 50–58 (1993). ArticleCAS Google Scholar
Holm, L. & Sander, C. Database algorithm for generating protein backbone and side-chain co-ordinates from a C alpha trace application to model building and detection of co-ordinate errors. J. Mol. Biol.218, 183–194 (1991). ArticleCAS Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Lorenz, M., Poole, K., Popp, D., Rosenbaum, G. & Holmes, K. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J. Mol. Biol.246, 108–119 (1995). ArticleCAS Google Scholar
DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, 2002). Google Scholar