Wildtype Kras2 can inhibit lung carcinogenesis in mice (original) (raw)
References
Anderson, M., Reynolds, S., You, M. & Maronpot, R. Role of proto-oncogene activation in carcinogenesis. Environ. Health Perspect.98, 12–24 (1992). Article Google Scholar
Marshall, C. How does p21_ras_ transform cells? Trends Genet.7, 91–95 (1991). ArticleCAS Google Scholar
Hua, V., Wang, W. & Duesberg, P. Dominant transformation by mutated human ras genes in vitro requires more than 100 times higher expression than is observed in cancers. Proc. Natl Acad. Sci. USA94, 9614–9619 (1997). ArticleCAS Google Scholar
You, M., Candrian, U., Maronpot, R., Stoner, G. & Anderson, M. Activation of the K-ras protooncogenes in spontaneously occurring and chemically induced lung tumors of the strain a mouse. Proc. Natl Acad. Sci. USA86, 3070–3074 (1989). ArticleCAS Google Scholar
Guerrero, I., Calzada, P., Mayer, A. & Pellicer, A. A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene. Proc. Natl. Acad. Sci. USA81, 202–205 (1984). ArticleCAS Google Scholar
Spandidos, D. & Wilkie, N. Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature310, 469–473 (1984). ArticleCAS Google Scholar
Sorrentino, V., McKinney, M., Drozdoff, V., Hume, C. & Fleissner, E. Spontaneous or carcinogen-mediated amplification of a mutated ras gene promotes neoplastic transformation. Oncogene Res.2, 189–195 (1988). CASPubMed Google Scholar
Cohen, J. & Levinson, A. A point mutation in the last intron responsible for increased expression and transforming activity of the c-Ha-ras oncogene. Nature334, 119–124 (1988). ArticleCAS Google Scholar
Finney, R. & Bishop, M. Predisposition to neoplastic transformation caused by gene replacement of H-_ras_1. Science260, 1524–1527 (1993). ArticleCAS Google Scholar
Hegi, M.E. et al. Allelotype analysis of mouse lung carcinomas reveals frequent allelic losses on chromosome 4 and an association between allelic imbalances on chromosome 6 and K-ras activation. Cancer Res.54, 6257–6264 (1994). CASPubMed Google Scholar
Bremner, R. & Balmain, A. Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell61, 407–417 (1990). ArticleCAS Google Scholar
Buchmann, A., Ruggeri, B., Klein-Szanto, A.J. & Balmain, A. Progression of squamous carcinoma cells to spindle carcinomas of mouse skin is associated with an imbalance of H-ras alleles on chromosome 7. Cancer Res.51, 4097–4101 (1991). CASPubMed Google Scholar
Stewart, S. & Guan, K.L. The dominant negative Ras mutant, N17_Ras_, can inhibit signaling independently of blocking Ras activation. J. Biol. Chem.275, 8854–8862 (2000). ArticleCAS Google Scholar
Shichinohe, T. et al. Suppression of pancreatic cancer by the dominant negative ras mutant, N116Y. J. Surg. Res.66, 125–130 (1996). ArticleCAS Google Scholar
Dammann, R. et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genet.25, 315–319 (2000). ArticleCAS Google Scholar
Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev.11, 2468–2481 (1997). ArticleCAS Google Scholar
Shimkin, M.B. & Stoner, G.D. Lung tumors in mice: application to carcinogenesis bioassay. Adv. Cancer Res.21, 1–58 (1975). ArticleCAS Google Scholar
McDoniels-Silvers, A.L., Herzog, C.R., Tyson, F.L., Malkinson, A.M. & You, M. Inactivation of both Rb and p53 pathways in mouse lung epithelial cell lines. Exp. Lung Res.27, 297–318 (2001). ArticleCAS Google Scholar
Sills, R.C., Hong, H.L., Melnick, R.L., Boorman, G.A. & Devereux, T.R. High frequency of codon 61 K-ras A →T transversions in lung and Harderian gland neoplasms of B6C3F1 mice exposed to chloroprene (2-chloro-1,3-butadiene) for 2 years, and comparisons with the structurally related chemicals isoprene and 1,3-butadiene. Carcinogenesis20, 657–662 (1999). ArticleCAS Google Scholar
Lowry, D. & Willumsen, B. Function and regulation of Ras. Ann. Rev. Biochem.62, 851–891 (1993). Article Google Scholar
McCormick, F. Activators and effectors of Ras p21 proteins. Curr. Opin. Genet. Dev.4, 71–76 (1994). ArticleCAS Google Scholar
Takeuchi, S. et al. Frequent loss of heterozygosity in region of the k1p1 locus in non–small cell lung cancer: evidence for a new tumor suppressor gene on the short arm of chromosome 12. Cancer Res.56, 738–740 (1996). CASPubMed Google Scholar
De Gregorio, L. et al. Prognostic value of loss of heterozygosity and K-Ras mutations in lung adenocarcinoma. Int. J. Cancer79, 269–272 (1998). ArticleCAS Google Scholar
Cowley, S., Paterson, H., Kemp, P. & Marshall, C.J. Activation of MAP kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell77, 841–852 (1994). ArticleCAS Google Scholar
Borasio, G.D. et al. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron2, 1087–1096 (1989). ArticleCAS Google Scholar
Borasio, G.D., Markus, A., Wittinghofer, A., Barde, Y.A. & Heumann, R. Involvement of ras p21 in neurotrophin-induced response of sensory, but not sympathetic neurons. J. Cell Biol.121, 665–672 (1993). ArticleCAS Google Scholar
Heumann, R. Neurotrophin signalling. Curr. Opin. Neurobiol.4, 668–679 (1994). ArticleCAS Google Scholar
Greene, L.A. & Tischler, A.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA73, 2424–2428 (1976). ArticleCAS Google Scholar
Noda, M. et al. Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line. Nature318, 73–75 (1985). ArticleCAS Google Scholar
Bar-Sagi, D. & Feramisco, J.R. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell42, 841–848 (1985). ArticleCAS Google Scholar
Guerrero, I., Wong, H., Pellicer, A. & Burstein, D.E. Activated N-ras gene induces neuronal differentiation of PC12 rat pheochromocytoma cells. J. Cell Physiol.129, 71–76 (1986). ArticleCAS Google Scholar
Feig, L.A. & Cooper, G.M. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell Biol.8, 3235–3243 (1988). ArticleCAS Google Scholar
Chang, E.H., Furth, M.E., Scolnick, E.M., & Lowy, D.R. Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature10, 479–483 (1982). Article Google Scholar
Pulciani, S., Santos, E., Long, L.K., Sorrention, V., & Barbacid, M. ras gene amplification and malignant transformation. Mol. Cell. Biol.5, 2836–2841 (1985). ArticleCAS Google Scholar
Cichutek, K. & Duesberg, P.H. Recombinant BALB and Harvey sarcoma viruses with normal proto-_ras_-coding regions transform embryo cells in culture and cause tumors in mice. J. Virol.63, 1377–1383 (1989). CASPubMedPubMed Central Google Scholar
Corominas, M., Perucho, M., Newcomb, E. W. & Pellicer, A. Differential expression of the normal and mutated K_ras_ alleles in chemically induced thymic lymphomas. Cancer Res.51, 5129–5133 (1991). CASPubMed Google Scholar
Chen, B., Johanson, L., Wiest, J.S., Anderson, M.W. & You, M. The second intron of the K-ras gene contains regulatory elements associated with mouse lung tumor susceptibility. Proc. Natl Acad. Sci. USA91, 1589–1593 (1994). ArticleCAS Google Scholar
Schwab, M., Alitalo, K., Varmus, H.E., Bishop, J.M., & George, D.A cellular oncogene (c-Ki-ras) is amplified, overexpressed, and located within karyotypic abnormalities in mouse adrenocortical tumour cells. Nature303, 497–501 (1983). ArticleCAS Google Scholar
Heighway, J. & Hasleton, P. S. c-Ki-ras amplification in human lung cancer. Br. J. Cancer53, 285–287 (1986). ArticleCAS Google Scholar
Shiraishi, M., Noguchi, M., Shimosato, Y., & Sekiya, T. Amplification of protooncogenes in surgical specimens of human lung carcinomas. Cancer Res.49, 6474–6479 (1989). CASPubMed Google Scholar
Slebos, R.J.C., Eyers, S.G., Wagenaar, S.S., & Rodenhuis, S. Cellular protoonocogenes are infrequently amplified in untreated non–small cell lung cancer. Br. J. Cancer59, 76–80 (1989). ArticleCAS Google Scholar
Field, J.K. & Spandidos, D.A. The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis (review). Anticancer Res.10, 1–22 (1990). CASPubMed Google Scholar
Brison, O. Gene amplification and tumor progression. Biochim. Biophys. Acta1155, 25–41 (1993). CASPubMed Google Scholar
Esteller, M., Garcia, A., Martinez-Palones, J. M., Xercavins, J. & Reventos, J. The clinicopathological significance of K-ras point mutation and gene amplification in endometrial cancer. Eur. J. Cancer33, 1572–1577 (1997). ArticleCAS Google Scholar
Saranath, D. et al. Oncogene amplification in squamous cell carcinoma of the oral cavity. Jpn. J. Cancer Res.80, 430–437 (1989). ArticleCAS Google Scholar
George, D.L. et al. Structure and expression of amplified cKi-ras gene sequences in Y1 mouse adrenal tumor cells. EMBO J.4, 1199–1203 (1985). ArticleCAS Google Scholar
National Toxicology Program Toxicology and carcinogenesis studies of chloroprene (CAS no. 126-99-8) in F344/N rats and B6C3F1 mice (inhalation studies). NTP Technical Report 467, NIH Publication no. 96–3957, NIEHS, NIH, Research Triangle Park, North Carolina (1996).
Herrmann, C., Martin, G.A. & Wittinghofer, A. Quantitative analysis of the complex between p21_ras_ and the _Ras_-binding domain of the human Raf-1 protein kinase. J Biol. Chem.270, 2901–2905 (1995). ArticleCAS Google Scholar