Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component (original) (raw)

References

  1. Rice, J.C. & Allis, C.D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell. Biol. 13, 263–273 (2001).
    Article CAS Google Scholar
  2. Turner, B.M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).
    Article CAS Google Scholar
  3. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).
    Article CAS Google Scholar
  4. Strahl, B.D. & Allis, D.C. The language of covalent histone modifications. Nature 403, 41–45 (2000).
    Article CAS Google Scholar
  5. Jeppesen, P., Mitchell, A., Turner, B. & Perry, P. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma 101, 322–332 (1992).
    Article CAS Google Scholar
  6. Peters, A.H. et al. Loss of the suv39h histone methyltransferases impairs Mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).
    Article CAS Google Scholar
  7. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).
    Article CAS Google Scholar
  8. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).
    Article CAS Google Scholar
  9. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).
    Article CAS Google Scholar
  10. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).
    Article CAS Google Scholar
  11. Taddei, A., Maison, C., Roche, D. & Almouzni, G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol. 3, 114–120 (2001).
    Article CAS Google Scholar
  12. Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. & Allshire, R.C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032 (1997).
    Article CAS Google Scholar
  13. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).
    Article CAS Google Scholar
  14. Cheung, P., Allis, C.D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).
    Article CAS Google Scholar
  15. Kipling, D., Wilson, H.E., Mitchell, A.R., Taylor, B.A. & Cooke, H.J. Mouse centromere mapping using oligonucleotide probes that detect variants of the minor satellite. Chromosoma 103, 46–55 (1994).
    Article CAS Google Scholar
  16. Akhtar, A., Zink, D. & Becker, P.B. Chromodomains are protein-RNA interaction modules. Nature 407, 405–409 (2000).
    Article CAS Google Scholar
  17. Jones, D.O., Cowell, I.G. & Singh, P.B. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays 22, 124–137 (2000).
    Article CAS Google Scholar
  18. Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet. 2, 59–67 (2001).
    Article CAS Google Scholar
  19. Lyon, M.F. X-chromosome inactivation. Curr. Biol. 9, R235–237 (1999).
    Article CAS Google Scholar
  20. Peters, A.H.F.M. et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nature Genet. 30, 77–80 (2002).
    Article CAS Google Scholar
  21. Boggs, B.A. et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genet. 30, 73–76 (2002).
    Article CAS Google Scholar
  22. Gasser, S.M. Positions of potential: nuclear organization and gene expression. Cell 104, 639–642 (2001).
    Article CAS Google Scholar
  23. Jaeger, L. The New World of ribozymes. Curr. Opin. Struct. Biol. 7, 324–335 (1997).
    Article CAS Google Scholar
  24. Nielsen, A.L. et al. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell 7, 729–739 (2001).
    Article CAS Google Scholar
  25. Jacobs, S.A. et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 20, 5232–5241 (2001).
    Article CAS Google Scholar
  26. Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3- 9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).
    Article CAS Google Scholar
  27. Kornberg, R.D., LaPointe, J.W. & Lorch, Y. Preparation of nucleosomes and chromatin. Methods Enzymol. 170, 3–14 (1989).
    Article CAS Google Scholar
  28. O'Neill, L.P. & Turner, B.M. Immunoprecipitation of chromatin. Methods Enzymol. 274, 189–197 (1996).
    Article CAS Google Scholar
  29. Brown, K.E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).
    Article CAS Google Scholar
  30. Martini, E., Roche, D.M.J., Marheineke, K., Verreault, A. & Almouzni, G. Recruitment of phosphorylated Chromatin Assembly Factor 1 to chromatin following UV irradiation of human cells. J. Cell Biol. 3, 563–575 (1998).
    Article Google Scholar

Download references