DNA repair mediated by endonuclease-independent LINE-1 retrotransposition (original) (raw)
References
Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell72, 595–605 (1993). ArticleCAS Google Scholar
Moran, J.V. & Gilbert, N. Mammalian LINE-1 retrotransposons and related elements. in Mobile DNA II (eds Craig, N., Craggie, R., Gellert, M. & Lambowitz, A.) 836–869 (ASM, Washington DC, 2002). Chapter Google Scholar
Feng, Q., Moran, J.V., Kazazian Jr, H.H. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell87, 905–916 (1996). ArticleCAS Google Scholar
Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell87, 917–927 (1996). ArticleCAS Google Scholar
Wei, W., Morrish, T.A., Alisch, R.S. & Moran, J.V. A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. Anal. Biochem.284, 435–438 (2000). ArticleCAS Google Scholar
Sassaman, D.M. et al. Many human L1 elements are capable of retrotransposition. Nature Genet.16, 37–43 (1997). ArticleCAS Google Scholar
Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol.21, 1429–1439 (2001). ArticleCAS Google Scholar
Voliva, C.F., Martin, S.L., Hutchison, C.A.D. & Edgell, M.H. Dispersal process associated with the L1 family of interspersed repetitive DNA sequences. J. Mol. Biol.178, 795–813 (1984). ArticleCAS Google Scholar
Teng, S.C., Kim, B. & Gabriel, A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature383, 641–644 (1996). Article Google Scholar
Li, Z. et al. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell83, 1079–1089 (1995). ArticleCAS Google Scholar
Blunt, T. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell80, 813–823 (1995). ArticleCAS Google Scholar
Giaccia, A.J. et al. Human chromosome 5 complements the DNA double-strand break-repair deficiency and γ-ray sensitivity of the XR-1 hamster variant. Am. J. Hum. Genet.47, 459–469 (1990). CASPubMedPubMed Central Google Scholar
Kojima, T., Nakajima, K. & Mikoshiba, K. The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Mol. Brain Res.75, 121–127 (2000). ArticleCAS Google Scholar
Mager, D., Henthorn, P. & Smithies, O. A Chinese G γ + (A γ Δ β) zero thalassemia deletion: comparison to other deletions in the human β-globin gene cluster and sequence analysis of the breakpoints. Nucleic Acids Res.13, 6559–6575 (1985). ArticleCAS Google Scholar
Priestley, A. et al. Molecular and biochemical characterisation of DNA-dependent protein kinase-defective rodent mutant irs-20. Nucleic Acids Res.26, 1965–1973 (1998). ArticleCAS Google Scholar
Luan, D.D. & Eickbush, T.H. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell. Biol.15, 3882–3891 (1995). ArticleCAS Google Scholar
Chambeyron, S., Bucheton, A. & Busseau, I. Tandem UAA repeats at the 3′ end of the transcript are essential for precise initiation of reverse transcription of the I factor in Drosophila melanogaster. J. Biol. Chem. online publication 6 March 2002 (DOI: 10.1074/bc.M200996200).
Ovchinnikov, I., Troxel, A.B. & Swergold, G.D. Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. Genome Res.11, 2050–2058 (2001). ArticleCAS Google Scholar
Levin, H.L. It's prime time for reverse transcriptase. Cell88, 5–8 (1997). ArticleCAS Google Scholar
Pardue, M.L., Danilevskaya, O.N., Traverse, K.L. & Lowenhaupt, K. Evolutionary links between telomeres and transposable elements. Genetica100, 73–84 (1997). ArticleCAS Google Scholar
Higashiyama, T., Noutoshi, Y., Fujie, M. & Yamada, T. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J.16, 3715–3723 (1997). ArticleCAS Google Scholar
Stamato, T.D., Weinstein, R., Giaccia, A. & Mackenzie, L. Isolation of cell cycle-dependent γ ray-sensitive Chinese hamster ovary cell. Somat. Cell Genet.9, 165–173 (1983). ArticleCAS Google Scholar
Fuller, L.F. & Painter, R.B. A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication. Mutat. Res.193, 109–121 (1988). CASPubMed Google Scholar
Stoneking, M. et al. Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. Genome Res.7, 1061–1071 (1997). ArticleCAS Google Scholar
Li, J. et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nature Genet.23, 348–353 (1999). ArticleCAS Google Scholar
Carroll, M.L. et al. Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J. Mol. Biol.311, 17–40 (2001). ArticleCAS Google Scholar
Dombroski, B.A., Mathias, S.L., Nanthakumar, E., Scott, A.F. & Kazazian Jr, H.H. Isolation of an active human transposable element. Science254, 1805–1808 (1991). ArticleCAS Google Scholar
Narita, N. et al. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J. Clin. Invest.91, 1862–1867 (1993). ArticleCAS Google Scholar
Kondo-Iida, E. et al. Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum. Mol. Genet.8, 2303–2309 (1999). ArticleCAS Google Scholar
Cost, G.J. & Boeke, J.D. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry37, 18081–18093 (1998). ArticleCAS Google Scholar