DNA repair mediated by endonuclease-independent LINE-1 retrotransposition (original) (raw)

References

  1. Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).
    Article CAS Google Scholar
  2. Moran, J.V. & Gilbert, N. Mammalian LINE-1 retrotransposons and related elements. in Mobile DNA II (eds Craig, N., Craggie, R., Gellert, M. & Lambowitz, A.) 836–869 (ASM, Washington DC, 2002).
    Chapter Google Scholar
  3. Feng, Q., Moran, J.V., Kazazian Jr, H.H. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).
    Article CAS Google Scholar
  4. Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).
    Article CAS Google Scholar
  5. Wei, W., Morrish, T.A., Alisch, R.S. & Moran, J.V. A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. Anal. Biochem. 284, 435–438 (2000).
    Article CAS Google Scholar
  6. Sassaman, D.M. et al. Many human L1 elements are capable of retrotransposition. Nature Genet. 16, 37–43 (1997).
    Article CAS Google Scholar
  7. Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001).
    Article CAS Google Scholar
  8. Voliva, C.F., Martin, S.L., Hutchison, C.A.D. & Edgell, M.H. Dispersal process associated with the L1 family of interspersed repetitive DNA sequences. J. Mol. Biol. 178, 795–813 (1984).
    Article CAS Google Scholar
  9. Teng, S.C., Kim, B. & Gabriel, A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383, 641–644 (1996).
    Article Google Scholar
  10. Li, Z. et al. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83, 1079–1089 (1995).
    Article CAS Google Scholar
  11. Blunt, T. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80, 813–823 (1995).
    Article CAS Google Scholar
  12. Giaccia, A.J. et al. Human chromosome 5 complements the DNA double-strand break-repair deficiency and γ-ray sensitivity of the XR-1 hamster variant. Am. J. Hum. Genet. 47, 459–469 (1990).
    CAS PubMed PubMed Central Google Scholar
  13. Kojima, T., Nakajima, K. & Mikoshiba, K. The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Mol. Brain Res. 75, 121–127 (2000).
    Article CAS Google Scholar
  14. Mager, D., Henthorn, P. & Smithies, O. A Chinese G γ + (A γ Δ β) zero thalassemia deletion: comparison to other deletions in the human β-globin gene cluster and sequence analysis of the breakpoints. Nucleic Acids Res. 13, 6559–6575 (1985).
    Article CAS Google Scholar
  15. Priestley, A. et al. Molecular and biochemical characterisation of DNA-dependent protein kinase-defective rodent mutant irs-20. Nucleic Acids Res. 26, 1965–1973 (1998).
    Article CAS Google Scholar
  16. Luan, D.D. & Eickbush, T.H. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell. Biol. 15, 3882–3891 (1995).
    Article CAS Google Scholar
  17. Chambeyron, S., Bucheton, A. & Busseau, I. Tandem UAA repeats at the 3′ end of the transcript are essential for precise initiation of reverse transcription of the I factor in Drosophila melanogaster. J. Biol. Chem. online publication 6 March 2002 (DOI: 10.1074/bc.M200996200).
  18. Ovchinnikov, I., Troxel, A.B. & Swergold, G.D. Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. Genome Res. 11, 2050–2058 (2001).
    Article CAS Google Scholar
  19. Levin, H.L. It's prime time for reverse transcriptase. Cell 88, 5–8 (1997).
    Article CAS Google Scholar
  20. Pardue, M.L., Danilevskaya, O.N., Traverse, K.L. & Lowenhaupt, K. Evolutionary links between telomeres and transposable elements. Genetica 100, 73–84 (1997).
    Article CAS Google Scholar
  21. Higashiyama, T., Noutoshi, Y., Fujie, M. & Yamada, T. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J. 16, 3715–3723 (1997).
    Article CAS Google Scholar
  22. Stamato, T.D., Weinstein, R., Giaccia, A. & Mackenzie, L. Isolation of cell cycle-dependent γ ray-sensitive Chinese hamster ovary cell. Somat. Cell Genet. 9, 165–173 (1983).
    Article CAS Google Scholar
  23. Fuller, L.F. & Painter, R.B. A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication. Mutat. Res. 193, 109–121 (1988).
    CAS PubMed Google Scholar
  24. Stoneking, M. et al. Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. Genome Res. 7, 1061–1071 (1997).
    Article CAS Google Scholar
  25. Li, J. et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nature Genet. 23, 348–353 (1999).
    Article CAS Google Scholar
  26. Carroll, M.L. et al. Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J. Mol. Biol. 311, 17–40 (2001).
    Article CAS Google Scholar
  27. Dombroski, B.A., Mathias, S.L., Nanthakumar, E., Scott, A.F. & Kazazian Jr, H.H. Isolation of an active human transposable element. Science 254, 1805–1808 (1991).
    Article CAS Google Scholar
  28. Narita, N. et al. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J. Clin. Invest. 91, 1862–1867 (1993).
    Article CAS Google Scholar
  29. Kondo-Iida, E. et al. Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum. Mol. Genet. 8, 2303–2309 (1999).
    Article CAS Google Scholar
  30. Cost, G.J. & Boeke, J.D. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37, 18081–18093 (1998).
    Article CAS Google Scholar

Download references