Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids (original) (raw)

References

  1. Fisher, C. R. Jr, Takai, K. & Le Bris, N. Hydrothermal vent ecosystems. Oceanography 20, 18–27 (2007).
    Google Scholar
  2. Johnson, H. P. & Pruis, M. J. Fluxes of fluid and heat from the oceanic crustal reservoir. Earth Planet. Sci. Lett. 216, 565–574 (2003).
    Article Google Scholar
  3. Mottl, M. J. in Energy and Mass Transfer in Marine Hydrothermal Systems (eds Halbach, P., Tunnicliffe, V. & Hein, J.) 271–286 (Dahlem Univ. Press, 2003).
    Google Scholar
  4. Wheat, C. G., McManus, J., Mottl, M. J. & Giambalvo, E. Oceanic phosphorus imbalance: Magnitude of the mid-ocean ridge flank hydrothermal sink. Geophys. Res. Lett. 30, 1895–1899 (2003).
    Article Google Scholar
  5. Lilley, M. D., Butterfield, D. A., Lupton, J. E. & Olson, E. J. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881 (2003).
    Article Google Scholar
  6. Lilley, M. D. et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364, 45–47 (1993).
    Article Google Scholar
  7. Tivey, M. K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20, 50–65 (2007).
    Article Google Scholar
  8. Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D. & Rona, P. A. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J. Geophys. Res. 100, 12527–12555 (1995).
    Article Google Scholar
  9. Von Damm, K. L. & Lilley, M. D. in The Subfloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S. D., DeLong, E. F., Kelley, D. S., Baross, J. A. & Cary, S. C.) 245–268 (American Geophysical Union, 2004).
    Book Google Scholar
  10. Von Damm, K. L. et al. Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375, 47–50 (1995).
    Article Google Scholar
  11. Wheat, C. G. et al. Heat and fluid flow through a basaltic outcrop on a ridge flank. Geochem. Geophys. Geosyst. 5, Q12006 (2004).
    Google Scholar
  12. Hutnak, M. et al. Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust. Nature Geosci. 1, 611–614 (2008).
    Article Google Scholar
  13. Fisher, A. T. et al. Hydrothermal Vent recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature 421, 618–621 (2003).
    Article Google Scholar
  14. Huber, J. A., Butterfield, D. A. & Baross, J. A. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl. Environ. Microbiol. 68, 1585–1594 (2002).
    Article Google Scholar
  15. Chapelle, F. H. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002).
    Article Google Scholar
  16. Summit, M. & Baross, J. A. A novel microbial habitat in the mid-ocean ridge subseafloor. Proc. Natl Acad. Sci. USA 98, 2158–2163 (2001).
    Article Google Scholar
  17. Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).
    Article Google Scholar
  18. Huber, J. A., Butterfield, D. A., Johnson, H. P. & Baross, J. A. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8, 88–99 (2006).
    Article Google Scholar
  19. Edwards, K. J., Bach, W. & McCollom, T. M. Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor. Trends Microbiol. 13, 449–456 (2005).
    Article Google Scholar
  20. Butterfield, D. A. et al. Gradients in the composition of hydrothermal fluids from the Endeavor segment vent field: Phase separation and brine loss. J. Geophys. Res. 99, 9561–9583 (1994).
    Article Google Scholar
  21. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).
    Article Google Scholar
  22. Schultz, A., Delaney, J. R. & McDuff, R. E. On the partitioning of heat flux between diffuse and point source seafloor venting. J. Geophys. Res. 97, 12299–12315 (1992).
    Article Google Scholar
  23. Butterfield, D. A. et al. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A. & Cary, S.C.) 269–289 (American Geophysical Union, 2004).
    Book Google Scholar
  24. Johnson, K. S., Beehler, C. L., Sakamoto-Arnold, C. M. & Childress, J. J. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science 213, 1139–1141 (1986).
    Article Google Scholar
  25. Le Bris, N., Govenar, B., Le Gall, C. & Fisher, C. R. Jr Variability of physico-chemical conditions in 9 °50′ N EPR diffuse flow vent habitats. Mar. Chem. 98, 167–182 (2006).
    Article Google Scholar
  26. Proskurowski, G., Lilley, M. D. & Olson, E. J. Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flow vents at 9 °50′ N East Pacific Rise. Geochim. Cosmochim. Acta 72, 2005–2023 (2008).
    Article Google Scholar
  27. Walker, B. D., McCarthy, M. D., Fisher, A. T. & Guilderson, T. P. Dissolved inorganic carbon isotopic composition of low-temperature axial and ridge-flank hydrothermal fluids of the Juan de Fuca Ridge. Mar. Chem. 108, 123–136 (2008).
    Article Google Scholar
  28. Ding, K. et al. The in situ pH of hydrothermal fluids at mid-ocean ridges. Earth Planet. Sci. Lett. 237, 167–174 (2005).
    Article Google Scholar
  29. Seewald, J. S., Cruse, A. & Saccocia, P. Aqueous volatiles in hydrothermal fluids from the Main Endeavor Field, northern Juan de Fuca Ridge: Temporal variability following earthquake activity. Earth Planet. Sci. Lett. 216, 575–590 (2003).
    Article Google Scholar
  30. Seyfried, W. E. Jr, Seewald, J. S., Berndt, M. E., Ding, K. & Foustoukos, D. I. Chemistry of hydrothermal vent fluids from the Main Endeavor Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. J. Geophys. Res. 108, 2429–2452 (2003).
    Article Google Scholar
  31. Tivey, M. A. & Johnson, H. P. Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields. Geology 30, 979–982 (2002).
    Article Google Scholar
  32. Sarrazin, J. et al. A dual sensor device to estimate fluid flow velocity at diffuse hydrothermal vents. Deep-Sea Res. I 56, 2065–2074 (2009).
    Article Google Scholar
  33. Ramondenc, P., Germanovich, L. N., Von Damm, K. L. & Lowell, R. P. The first measurements of hydrothermal heat output at 9 °50′ N, East Pacific Rise. Earth Planet. Sci. Lett. 245, 487–497 (2006).
    Article Google Scholar
  34. Rona, P. A. & Trivett, D. Discrete and diffuse heat transfer at Ashes vent field, Axial Volcano, Juan de Fuca Ridge. Earth Planet. Sci. Lett. 109, 57–71 (1992).
    Article Google Scholar
  35. Veirs, S. R., McDuff, R. E. & Stahr, F. R. Magnitude and variance of near-bottom horizontal heat flux at the Main Endeavor hydrothermal vent field. Geochem. Geophys. Geosyst. 7, Q02004 (2006).
    Article Google Scholar
  36. Foustoukos, D. I., Pester, N. J., Ding, K. & Seyfried, C. F. Dissolved carbon species in associated diffuse and focused flow hydrothermal vents at the Main Endeavor Field, Juan de Fuca Ridge: Phase equilibria and kinetic constraints. Geochem. Geophys. Geosyst. 10, Q10003 (2009).
    Article Google Scholar
  37. Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).
    Google Scholar
  38. Girguis, P. R. & Childress, J. J. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: Responses to environmental variations in substrate concentrations and temperature. J. Exp. Biol. 209, 3516–3528 (2006).
    Article Google Scholar
  39. Nyholm, S. V., Robidart, J. & Girguis, P. R. Coupling metabolite flux to transcriptomics: Insights into the molecular mechanisms underlying primary productivity by the hydrothermal vent tubeworm Ridgeia piscesae. Biol. Bull. 214, 255–265 (2008).
    Article Google Scholar
  40. Shock, E.L. & Holland, M. E. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A. & Cary, S.C.) 153–166 (American Geophysical Union, 2004).
    Book Google Scholar
  41. Reysenbach, A-L. & Shock, E. L. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296, 1077–1082 (2002).
    Article Google Scholar
  42. Perner, M., Peterson, J. M., Zielinski, F., Gennerich, H-H. & Seifert, R. Geochemical constraints on the diversity and activity of H2-oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and ultramafic-hosted vent. FEMS Microbiol. Ecol. 74, 55–71 (2010).
    Article Google Scholar
  43. Proskurowski, G., Lilley, M. D. & Brown, T. Isotopic evidence of magmatism and seawater bicarbonate removal at the Endeavor hydrothermal system. Earth Planet. Sci. Lett. 225, 53–61 (2004).
    Article Google Scholar
  44. Arp, A. J. & Childress, J. J. Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science 219, 295–297 (1983).
    Article Google Scholar
  45. Crank, J. The Mathematics of Diffusion 2nd edn (Clarendon, 1975).
    Google Scholar
  46. LaPack, M. A., Tou, J. C. & Enke, C. G. Membrane mass spectrometry for the direct trace analysis of volatile organic compounts in air and water. Anal. Chem. 62, 1265–1271 (1990).
    Article Google Scholar
  47. Pinnau, I. & Toy, L. G. Gas and vapour transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl- 4,5-difluoro- 1,3-dioxole/tetrafluoroethylene. J. Membrane Sci. 109, 125–133 (1996).
    Article Google Scholar
  48. Camilli, R. & Duryea, A. N. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry. Environ. Sci. Technol. 43, 5014–5021 (2009).
    Article Google Scholar
  49. Edmond, J. M., Massoth, G. J. & Lilley, M. D. Submersible-deployed samples for axial vent waters. RIDGE Events 3, 23–24 (1992).
    Google Scholar
  50. Germanovich, L. N. et al. Direct measurements of hydrothermal heat output at Juan de Fuca Ridge. EOS Trans. (Fall Meeting Suppl.) 90 abstr. OS13A-1179 (2009).

Download references