Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles (original) (raw)

References

  1. Fielding, C. R. et al. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime. J. Geol. Soc. Lond. 165, 129–140 (2008).
    Article Google Scholar
  2. Montañez, I. P. & Poulsen, C. J. The Late Paleozoic Ice Age: an evolving paradigm. Annu. Rev. Earth Planet. Sci. 41, 629–656 (2013).
    Article Google Scholar
  3. Soreghan, G. S., Sweet, D. E. & Heavens, N. G. Upland glaciation in tropical Pangaea: geologic evidence and implications for late Paleozoic climate modeling. J. Geol. 122, 137–163 (2014).
    Google Scholar
  4. Crowley, T. J. & Baum, S. K. Modeling late Paleozoic glaciation. Geology 20, 507–510 (1992).
    Article Google Scholar
  5. Royer, D. L. Treatise on Geochemistry 2nd edn, Vol. 6 (eds Holland, H. & Turekian, K.) 251–267 (Elsevier Ltd, 2014).
  6. Horton, D. E., Poulsen, C. J. & Pollard, D. Influence of high-latitude vegetation feedbacks on late Palaeozoic glacial cycles. Nat. Geosci. 3, 1–6 (2010).
    Article Google Scholar
  7. Berner, R. A. The long-term carbon cycle, fossil fuels, and atmospheric composition. Nature 426, 323–326 (2003).
    Article Google Scholar
  8. Cleal, C. J. & Thomas, B. A. Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology 3, 13–31 (2005).
    Article Google Scholar
  9. Poulsen, C. J., Tabor, C. & White, J. D. Long-term climate forcing by atmospheric oxygen concentrations. Science 348, 1238–1241 (2015).
    Article Google Scholar
  10. Isbell, J. et al. Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Res. 22, 1–19 (2012).
    Article Google Scholar
  11. Heckel, P. H. Pennsylvanian stratigraphy of Northern Midcontinent Shelf and biostratigraphic correlation of cyclothems. Stratigraphy 10, 3–39 (2013).
    Google Scholar
  12. Breecker, D. O. Quantifying and understanding the uncertainty of atmospheric CO2 concentrations determined from calcic paleosols. Geochem. Geophys. Geosyst. 14, 3210–3220 (2013).
    Article Google Scholar
  13. McElwain, J. C. & Chaloner, W. G. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the palaeozoic. Ann. Bot. 76, 389–395 (1995).
    Article Google Scholar
  14. Franks, P. J. et al. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophys. Res. Lett. 41, 4685–4694 (2014).
    Article Google Scholar
  15. Lowry, D. P., Poulsen, C. J., Horton, D. E., Torsvik, T. H. & Pollard, D. Controls on Paleozoic ice sheet initiation. Geology 42, 627–630 (2014).
    Article Google Scholar
  16. Breecker, D. O., Sharp, Z. D. & McFadden, L. D. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. Proc. Natl Acad. Sci. USA 107, 576–580 (2010).
    Article Google Scholar
  17. Siegenthaler, U. et al. Stable carbon cycle-climate relationship during the Late Pleistocene. Science 310, 1313–1317 (2005).
    Article Google Scholar
  18. Eros, J. M. et al. Sequence stratigraphy and onlap history, Donets Basin, Ukraine: Insight into Late Paleozoic ice age dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313, 1–25 (2012).
    Article Google Scholar
  19. Belt, E. S., Heckel, P. H., Lentz, L. J., Bragonier, W. A. & Lyons, T. W. Record of glacial-eustatic sea-level fluctuations in complex middle to late Pennsylvanian facies in the Northern Appalachian Basin and relation to similar events in the Midcontinent basin. Sediment. Geol. 238, 79–100 (2011).
    Article Google Scholar
  20. Koch, J. T. & Frank, T. D. The Pennsylvanian-Permian transition in the low-latitude carbonate record and the onset of major Gondwanan glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 362–372 (2011).
    Article Google Scholar
  21. DiMichele, W. A. Wetland-dryland vegetational dynamics in the Pennsylvanian ice age tropics. Int. J. Plant Sci. 175, 123–164 (2014).
    Article Google Scholar
  22. Phillips, T. L. & Peppers, R. A. Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence. Int. J. Coal Geol. 3, 205–255 (1984).
    Article Google Scholar
  23. DiMichele, W. A., Montañez, I. P., Poulsen, C. J. & Tabor, N. J. Vegetation-climate feedbacks and regime shifts in the Late Paleozoic ice age earth. Geobiology 7, 200–226 (2009).
    Article Google Scholar
  24. Sahey, S., Benton, M. J. & Falcon-Lang, H. J. Rainforest collapse triggered carboniferous tetrapod diversification in Euramerica. Geology 38, 1079–1082 (2010).
    Article Google Scholar
  25. Tabor, N. J., DiMichele, W. A., Montañez, I. P. & Chaney, D. S. Late Paleozoic continental warming of a cold tropical basin and floristic change in western Pangea. Int. J. Coal Geol. 119, 177–186 (2013).
    Article Google Scholar
  26. Beerling, D. J. & Berner, R. A. Impact of a Permo-Carboniferous high O2 event on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 97, 12428–12432 (2000).
    Article Google Scholar
  27. Flexas, J. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193, 70–84 (2012).
    Article Google Scholar
  28. McElwain, J. C., Yiotis, C. & Lawson, T. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytol. 209, 94–103 (2015).
    Article Google Scholar
  29. Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711–714 (1990).
    Article Google Scholar
  30. Montañez, I. P. et al. CO2-forced climate instability and linkages to tropical vegetation during late paleozoic deglaciation. Science 315, 87–91 (2007).
    Article Google Scholar
  31. Mack, G. H., James, W. C. & Monger, H. C. Classification of paleosols. Geol. Soc. Am. Bull. 105, 129–136 (1993).
    Article Google Scholar
  32. Kouwenberg, L. L. R., Hines, R. R. & McElwain, J. C. A new transfer technique to extract and process thin and fragmented fossil cuticle using polyester overlays. Rev. Palaeobot. Palynol. 145, 243–248 (2007).
    Article Google Scholar
  33. Deutz, P., Montañez, I. P. & Monger, H. C. Morphologies and stable and radiogenic isotope compositions of pedogenic carbonates in Late Quaternary relict and buried soils, New Mexico: an integrated record of pedogenic overprinting. J. Sediment. Res. 72, 809–822 (2002).
    Article Google Scholar
  34. Cerling, T. E. Use of carbon isotopes in paleosols as an indicator of the pCO2 of the paleoatmosphere. Glob. Geochem. Cycles 6, 307–314 (1992).
    Article Google Scholar
  35. Rosenau, N. A. & Tabor, N. J. Oxygen and hydrogen isotope compositions of paleosol phyllosilicates: differential burial histories and determination of middle-late Pennsylvanian low-latitude terrestrial paleotemperatures. Palaeogeol. Palaeoclimatol. Palaeoecol. 392, 382–397 (2013).
    Article Google Scholar
  36. Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond-ordering in paleosol carbonates. Proc. Natl Acad. Sci. USA 107, 11245–11249 (2010).
    Article Google Scholar
  37. Quade, J., Eiler, J., Daeron, M. & Achyuthan, H. The clumped isotope geothermometer in soil and paleosol carbonate. Geochim. Cosmochim. Acta 105, 92–107 (2013).
    Article Google Scholar
  38. Rimmer, S. M., Rowe, H. D., Taulbee, D. N. & Hower, J. C. Influence of maceral content on δ13C and δ15N in a Middle Pennsylvanian coal. Chem. Geol. 77, 77–90 (2006).
    Article Google Scholar
  39. Grossman, E. L. et al. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268, 222–233 (2008).
    Article Google Scholar
  40. Romanek, C. S., Grossman, E. L. & Morse, J. W. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim. Cosmochim. Acta 56, 419–430 (1992).
    Article Google Scholar
  41. Montañez, I. P. Modern soil system constraints on reconstructing deep-time atmospheric CO2 . Geochim. Cosmochim. Acta 101, 57–75 (2013).
    Article Google Scholar
  42. Woodward, F. I. Plant-responses to past concentrations of CO2 . Vegetation 104, 145–155 (1993).
    Article Google Scholar
  43. Kurschner, W. M., van der Burgh, J., Visscher, H. & Dilcher, D. L. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Mar. Micropaleontol. 27, 299–312 (1996).
    Article Google Scholar
  44. Barclay, R. S., McElwain, J. C. & Sageman, B. B. Carbon sequestration activated by a volcanic CO2 pulse during oceanic anoxic event 2. Nat. Geosci. 3, 205–208 (2010).
    Article Google Scholar
  45. Steinthorsdottir, M., Jeram, A. J. & McElwain, J. C. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 418–432 (2011).
    Article Google Scholar
  46. McElwain, J. C., Beerling, D. J. & Woodward, F. I. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 28, 1386–1390 (1999).
    Article Google Scholar
  47. Atchison, J. M., Head, L. M. & McCarthy, L. P. Stomatal parameters and atmospheric change since 7500 years before present: evidence from Eremophila deserti (Myoporaceae) leaves from the Flinders Ranges region, South Australia. Aust. J. Bot. 48, 223–232 (2000).
    Article Google Scholar
  48. Beerling, D. J., Fox, A. & Anderson, C. W. Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves. Am. J. Sci. 309, 775–787 (2009).
    Article Google Scholar
  49. McElwain, J. C. & Chaloner, W. G. The fossil cuticle as skeletal record of environmental change. Palaios 11, 376–388 (1996).
    Article Google Scholar
  50. Steinthorsdottir, M. _Atmospheric CO_2 and Stomatal Responses at the Triassic-Jurassic Boundary PhD thesis, Univ. College Dublin (2010).
  51. McElwain, J. C., Montañez, I. P., White, J. D., Wilson, J. & Yiotis, H. Was atmospheric CO2 capped at 1000 ppm over the past 300 million years? Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 653–658 (2016).
    Article Google Scholar
  52. Boyce, C. K. & Zwieniecki, M. A. Leaf fossil record suggests limited influence of atmospheric CO2 on terrestrial productivity prior to angiosperm evolution. Proc. Natl Acad. Sci. USA 109, 10403–10408 (2012).
    Article Google Scholar
  53. Brodribb, T. J., Feild, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898 (2007).
    Article Google Scholar
  54. White, M. A., Thornton, P. E., Running, S. W. & Nemani, R. R. Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: net primary production controls. Earth Interact. 4, 1–85 (2000).
    Article Google Scholar
  55. Wilson, J. P. et al. Earth-life transitions: paleobiology in the context of Earth system evolution. Paleontological Society Paper 21 167–195 (Yale Press, 2015).
  56. Dow, G. J., Bergmann, D. C. & Berry, J. A. An integrated model of stomatal development and leaf physiology. New Phytol. 201, 1218–1226 (2014).
    Article Google Scholar
  57. Pollard, D. & Thompson, S.L. Use of a land-surface-transfer scheme (Lsx) in a global climate model—the response to doubling stomatal-resistance. Global Planet Change 10, 129–161 (1995).
    Article Google Scholar
  58. Thompson, S.L. & Pollard, D. A global climate model (genesis) with a land- surface transfer scheme (Lsx).1. Present climate simulation. J. Clim. 8, 732–761 (1995).
    Article Google Scholar
  59. Thompson, S.L. & Pollard, D. Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS version-2 global climate model. J. Clim. 10, 871–900 (1997).
    Article Google Scholar

Download references