Lightning-induced reduction of phosphorus oxidation state (original) (raw)
References
Pasek, M. A. Rethinking early earth phosphorus geochemistry. Proc. Natl Acad. Sci. USA3, 853–858 (2008). Article Google Scholar
Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev.51, 109–135 (2000). Article Google Scholar
MacIntire, W. H., Winterberg, S. H., Hardin, L. J., Sterges, A. J. & Clements, L. B. Fertilizer evaluation of certain phosphorus, phosphorous, and phosphoric materials by means of pot cultures. J. Am. Soc. Agron.42, 543–549 (1950). Article Google Scholar
White, A. K. & Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol.61, 379–400 (2007). Article Google Scholar
Schink, B., Thiemann, V., Laue, H. & Friedrich, M. W. Desulfotignum phosphitoxidans sp. nov., a new marine sulphate reducer that oxidizes phosphite to phosphate. Arch. Microbiol.177, 381–391 (2002). Article Google Scholar
Metcalf, W. W. & Wolfe, R. S. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J. Bacteriol.180, 5547–5558 (1998). Google Scholar
Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res.108, 4005 (2003). Article Google Scholar
Krider, E. P., Dawson, G. A. & Uman, M. A. Peak power and energy dissipation in a single-stroke lightning flash. J. Geophys. Res.73, 3335–3339 (1968). Article Google Scholar
Uman, M. A. Peak temperature of lightning. J. Atmos. Terr. Phys.26, 123–128 (1964). Article Google Scholar
Noxon, J. F. Atmospheric nitrogen-fixation by lightning. Geophys. Res. Lett.3, 463–465 (1976). Article Google Scholar
Essene, E. J. & Fisher, D. C. Lightning strike fusion- extreme reduction and metal-silicate liquid immiscibility. Science234, 189–193 (1986). Article Google Scholar
Maramba, B. & Eric, R. H. Phosphide capacities of ferromanganese smelting slags. Miner. Eng.21, 132–137 (2008). Article Google Scholar
Pasek, M. A. & Lauretta, D. S. Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early earth. Astrobiology5, 515–535 (2005). Article Google Scholar
Bryant, D. E. & Kee, T. P. Direct evidence for the availability of reactive, water soluble phosphorus on the early earth. H-phosphinic acid from the Nantan meteorite. Chem. Commun.22, 2344–2346 (2006). Article Google Scholar
Pasek, M. A., Dworkin, J. P. & Lauretta, D. S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta71, 1721–1736 (2007). Article Google Scholar
Bryant, D. E. et al. Electrochemical studies of iron meteorites. Phosphorus redox on the early earth. Int. J. Astro.8, 27–36 (2009). Article Google Scholar
Parnell, J., Thackrey, S., Muirhead, D. & Wright, A. Transient high-temperature processing of silicates in fulgurites as analogues for meteorite and impact melts. Lunar Planet. Sci. Conf. Proc.39, 1286 (2008). Google Scholar
Glindemann, D., de Graaf, R. M. & Schwartz, A. W. Chemical reduction of phosphate on the primitive earth. Orig. Life Evol. Biosph.29, 551–561 (1999). Article Google Scholar
Glindemann, D., Edwards, M. & Schrems, O. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmos. Environ.38, 6867–6874 (2004). Article Google Scholar
Gassmann, G., van Beusekom, J. E. E. & Glindemann, D. Offshore atmospheric phosphine. Naturwissenschaften83, 129–131 (1996). Article Google Scholar
Glindemann, D., Bergmann, A., Stottmeister, U. & Gassmann, G. Phosphine in the lower terrestrial atmosphere. Naturwissenschaften83, 131–133 (1996). Article Google Scholar
Sannigrahi, P., Ingall, E. D. & Benner, R. Nature and dynamics of phosphorus-containing components of marine dissolved and particulate organic matter. Geochim. Cosmochim. Acta70, 5868–5882 (2006). Article Google Scholar
Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev.107, 563–576 (2007). Article Google Scholar
Quinn, J. P., Kulakova, A. N., Cooley, N. A. & McGrath, J. W. New ways to break an old bond: The bacterial carbon–phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ. Microbiol.9, 2392–2400 (2007). Article Google Scholar
Karl, D. M. et al. Aerobic production of methane in the sea. Nature Geosci.1, 473–378 (2008). Article Google Scholar
Chao, E. C. T., Dwornik, E. J. & Littler, J. New data on the nickel-iron spherules from southeast asian tektites and their implications. Geochim. Cosmochim. Acta28, 871–980 (1964). Article Google Scholar
Iverson, W. P. Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans. Nature217, 1265–1267 (1968). Article Google Scholar
Schoenberg, R., Kamber, B. S., Collerson, K. D. & Moorbath, S. Tungsten isotope evidence from similar to 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature418, 403–405 (2002). Article Google Scholar
Cade-Menun, B. J., Liu, C. W., Nunlist, R. & McColl, J. G. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: Extractants, metals, and phosphorus relaxation times. J. Environ. Qual.31, 457–465 (2002). Article Google Scholar
Sposito, G. The Chemistry of Soils (Oxford Univ. Press, 2008). Google Scholar