Lightning-induced reduction of phosphorus oxidation state (original) (raw)

References

  1. Pasek, M. A. Rethinking early earth phosphorus geochemistry. Proc. Natl Acad. Sci. USA 3, 853–858 (2008).
    Article Google Scholar
  2. Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109–135 (2000).
    Article Google Scholar
  3. MacIntire, W. H., Winterberg, S. H., Hardin, L. J., Sterges, A. J. & Clements, L. B. Fertilizer evaluation of certain phosphorus, phosphorous, and phosphoric materials by means of pot cultures. J. Am. Soc. Agron. 42, 543–549 (1950).
    Article Google Scholar
  4. White, A. K. & Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol. 61, 379–400 (2007).
    Article Google Scholar
  5. Schink, B., Thiemann, V., Laue, H. & Friedrich, M. W. Desulfotignum phosphitoxidans sp. nov., a new marine sulphate reducer that oxidizes phosphite to phosphate. Arch. Microbiol. 177, 381–391 (2002).
    Article Google Scholar
  6. Metcalf, W. W. & Wolfe, R. S. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J. Bacteriol. 180, 5547–5558 (1998).
    Google Scholar
  7. Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res. 108, 4005 (2003).
    Article Google Scholar
  8. Krider, E. P., Dawson, G. A. & Uman, M. A. Peak power and energy dissipation in a single-stroke lightning flash. J. Geophys. Res. 73, 3335–3339 (1968).
    Article Google Scholar
  9. Uman, M. A. Peak temperature of lightning. J. Atmos. Terr. Phys. 26, 123–128 (1964).
    Article Google Scholar
  10. Noxon, J. F. Atmospheric nitrogen-fixation by lightning. Geophys. Res. Lett. 3, 463–465 (1976).
    Article Google Scholar
  11. Essene, E. J. & Fisher, D. C. Lightning strike fusion- extreme reduction and metal-silicate liquid immiscibility. Science 234, 189–193 (1986).
    Article Google Scholar
  12. Maramba, B. & Eric, R. H. Phosphide capacities of ferromanganese smelting slags. Miner. Eng. 21, 132–137 (2008).
    Article Google Scholar
  13. Pasek, M. A. & Lauretta, D. S. Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early earth. Astrobiology 5, 515–535 (2005).
    Article Google Scholar
  14. Bryant, D. E. & Kee, T. P. Direct evidence for the availability of reactive, water soluble phosphorus on the early earth. H-phosphinic acid from the Nantan meteorite. Chem. Commun. 22, 2344–2346 (2006).
    Article Google Scholar
  15. Pasek, M. A., Dworkin, J. P. & Lauretta, D. S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 71, 1721–1736 (2007).
    Article Google Scholar
  16. Bryant, D. E. et al. Electrochemical studies of iron meteorites. Phosphorus redox on the early earth. Int. J. Astro. 8, 27–36 (2009).
    Article Google Scholar
  17. Parnell, J., Thackrey, S., Muirhead, D. & Wright, A. Transient high-temperature processing of silicates in fulgurites as analogues for meteorite and impact melts. Lunar Planet. Sci. Conf. Proc. 39, 1286 (2008).
    Google Scholar
  18. Glindemann, D., de Graaf, R. M. & Schwartz, A. W. Chemical reduction of phosphate on the primitive earth. Orig. Life Evol. Biosph. 29, 551–561 (1999).
    Article Google Scholar
  19. Glindemann, D., Edwards, M. & Schrems, O. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmos. Environ. 38, 6867–6874 (2004).
    Article Google Scholar
  20. Gassmann, G., van Beusekom, J. E. E. & Glindemann, D. Offshore atmospheric phosphine. Naturwissenschaften 83, 129–131 (1996).
    Article Google Scholar
  21. Glindemann, D., Bergmann, A., Stottmeister, U. & Gassmann, G. Phosphine in the lower terrestrial atmosphere. Naturwissenschaften 83, 131–133 (1996).
    Article Google Scholar
  22. Sannigrahi, P., Ingall, E. D. & Benner, R. Nature and dynamics of phosphorus-containing components of marine dissolved and particulate organic matter. Geochim. Cosmochim. Acta 70, 5868–5882 (2006).
    Article Google Scholar
  23. Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).
    Article Google Scholar
  24. Quinn, J. P., Kulakova, A. N., Cooley, N. A. & McGrath, J. W. New ways to break an old bond: The bacterial carbon–phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ. Microbiol. 9, 2392–2400 (2007).
    Article Google Scholar
  25. Karl, D. M. et al. Aerobic production of methane in the sea. Nature Geosci. 1, 473–378 (2008).
    Article Google Scholar
  26. Chao, E. C. T., Dwornik, E. J. & Littler, J. New data on the nickel-iron spherules from southeast asian tektites and their implications. Geochim. Cosmochim. Acta 28, 871–980 (1964).
    Article Google Scholar
  27. Iverson, W. P. Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans. Nature 217, 1265–1267 (1968).
    Article Google Scholar
  28. Schoenberg, R., Kamber, B. S., Collerson, K. D. & Moorbath, S. Tungsten isotope evidence from similar to 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418, 403–405 (2002).
    Article Google Scholar
  29. Cade-Menun, B. J., Liu, C. W., Nunlist, R. & McColl, J. G. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: Extractants, metals, and phosphorus relaxation times. J. Environ. Qual. 31, 457–465 (2002).
    Article Google Scholar
  30. Sposito, G. The Chemistry of Soils (Oxford Univ. Press, 2008).
    Google Scholar

Download references