Emerging geothermometers for estimating slab surface temperatures (original) (raw)

References

  1. Hacker, B. H2O subduction beyond arcs. Geochem. Geophys. Geosys. 9, Q03001 (2008).
    Article Google Scholar
  2. Manning C. E. The chemistry of subduction-zone fluids (frontiers). Earth Planet. Sci. Lett. 223, 1–16 (2004).
    Article Google Scholar
  3. Schmidt, M. W., Vielzeuf, D. & Auzanneau, E. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 228, 65–84 (2004).
    Article Google Scholar
  4. Hermann, J., Spandler, C., Hack, A. & Korsakov, A. V. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 92, 399–417 (2006).
    Article Google Scholar
  5. Kessel, R., Ulmer, P., Pettke, T., Schmidt, M. W. & Thompson, A. B. The water-basalt system at 4 to 6GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth Planet. Sci. Lett. 237, 873–892 (2005).
    Article Google Scholar
  6. Gill, J. Orogenic Andesites and Plate Tectonics (Springer, 1981).
    Book Google Scholar
  7. Elliott, T. R. in Inside the Subduction Factory (ed. Eiler, J. M.) 23–45 (Geophysical Monograph Series Vol. 138, AGU, 2003).
    Book Google Scholar
  8. Pearce, J. A., Stern, R. J., Bloomer, S. H. & Fryer, P. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem. Geophys. Geosys. 6, Q07006 (2005).
    Article Google Scholar
  9. Grove, T. L., Parman, S. W., Bowring, S. A., Price, R. C. & Baker, M. B. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib. Mineral. Petr. 142, 375–396 (2002).
    Article Google Scholar
  10. Eiler, J. M., Carr, M. J., Reagan, M. & Stolper, E. Oxygen isotope constraints on the sources of Central American arc lavas. Geochem. Geophys. Geosys. 6, Q07007 (2005).
    Article Google Scholar
  11. Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N. & Khubunaya S. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet. Sci. Lett. 255, 53–69 (2007).
    Article Google Scholar
  12. McDade, P., Blundy, J. D. & Wood, B. J. Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am. Mineral. 88, 1825–1831 (2003).
    Article Google Scholar
  13. Peacock, S. M., Rushmer, T. & Thompson, A. B. Partial melting of subducted oceanic crust. Earth Planet. Sci. Lett. 121, 227–244 (1994).
    Article Google Scholar
  14. van Keken, P. E., Kiefer, B. & Peacock, S. M. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosys. 3, 1056 (2002).
    Article Google Scholar
  15. Kelemen, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L. & Hacker, B. R. in Inside the Subduction Factory (ed. Eiler, J. M.) 293–311 (Geophysical Monograph Series Vol. 138, AGU, 2003).
    Book Google Scholar
  16. Arcay, D., Tric, E. & Doin, M.-P. Slab surface temperature in subduction zones: Influence of the interplate decoupling depth and upper plate thinning processes. Earth Planet. Sci. Lett. 255, 324–338 (2007).
    Article Google Scholar
  17. Kincaid, C. & Griffiths, R. W. Variability in flow and temperature within mantle subduction zones. Geochem. Geophys. Geosys 5, Q06002 (2004).
    Article Google Scholar
  18. Castro, A. & Gerya, T. V. Magmatic implications of mantle wedge plumes: Experimental study. Lithos 103, 138–148 (2008).
    Article Google Scholar
  19. Peacock, S. M. in Inside the Subduction Factory (ed. Eiler, J. M.) 7–22 (Geophysical Monograph Series Vol. 138, AGU, 2003).
    Book Google Scholar
  20. Rupke, L. H., Phillps Morgan, J., Hort, M. & Connolly, J. A. C. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004).
    Article Google Scholar
  21. Klimm, K., Blundy, J. D. & Green, T. H. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J. Petrol. 49, 523–553 (2008).
    Article Google Scholar
  22. Hermann, J. & Rubatto, D. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem. Geol. 265, 512–526 (2009).
    Article Google Scholar
  23. Antignano, A. & Manning, C. E. Rutile solubility in H2O, H2O-SiO2, and H2O NaAlSi3O8 fluids at 0.7–20 GPa and 700–1000 °C: Implications for mobility of nominally insoluble elements. Chem. Geol. 255, 283–293 (2008).
    Article Google Scholar
  24. Schmidt, M. W., Dardon, A., Chazot, G. & Vannucci, R. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth Planet. Sci. Lett. 226, 415–432 (2004).
    Article Google Scholar
  25. Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: an experimental study. J. Petrol. 49, 717–740 (2008).
    Article Google Scholar
  26. Manning, C. E. Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Schweiz. Miner. Petrog. 78, 225–242 (1998).
    Google Scholar
  27. Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J.-G. Recycled dehydratrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002).
    Article Google Scholar
  28. Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715 – 734 (2006).
    Article Google Scholar
  29. Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).
    Article Google Scholar
  30. Blundy, J., Cashman, K. & Humphreys, M. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443, 76–80 (2006).
    Article Google Scholar
  31. Gorbatov, A. & Kostoglodov, V. Maximum depth of seismicity and thermal parameter of the subducting slab: General empirical relation and its application. Tectonophysics 277, 165–187 (1997).
    Article Google Scholar
  32. Syracuse, E. & Abers, G. Global compilation of variations in slab depthbeneath arc volcanoes and implications. Geochem. Geophys. Geosys. 7, Q05017 (2006).
    Article Google Scholar
  33. Pardo, M. & Suarez, G. Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. J. Geophys. Res. 100, 12357–12373 (1995).
    Article Google Scholar
  34. Cooper, L. Volatiles in Tonga Arc Magmas and Their Role in Unraveling Subduction Zone Processes. PhD thesis, Boston Univ. (2009).
    Google Scholar
  35. Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth's near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).
    Article Google Scholar
  36. Tropper, P., Manning, C. E. & Harlov, D. E. Solubility of CePO4 and YPO4 in H2O, H2O-NaCl, H2O-NaF and H2O-Albite Fluids at 800 °C and 1 GPa: Implications for REE transport during subduction-zone metasomatism. AGU Fall Meet. abstr. V31D–2184 (2008).
  37. Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).
    Article Google Scholar
  38. Montel, J.-M. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem. Geol. 110, 127–146 (1993).
    Article Google Scholar
  39. Cooper, L. et al. Boninites from the modern Tonga arc. J. Geophys. Res. (in the press).
  40. Cervantes, P. & Wallace, P. J. Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31, 235–238 (2003).
    Article Google Scholar
  41. Roberge, J., Delgado-Granados, H. & Wallace, P. J. Mafic magma recharge supplies high CO2 and SO2 gas fluxes from Popocatepetl volcano, Mexico. Geology 37, 107–110 (2009).
    Article Google Scholar

Download references