TRPV2 has a pivotal role in macrophage particle binding and phagocytosis (original) (raw)
Aderem, A. & Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol.17, 593–623 (1999). ArticleCAS Google Scholar
Flannagan, R.S., Cosio, G. & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol.7, 355–366 (2009). ArticleCAS Google Scholar
Hackam, D.J., Rotstein, O.D., Schreiber, A., Zhang, W. & Grinstein, S. Rho is required for the initiation of calcium signaling and phagocytosis by Fcγ receptors in macrophages. J. Exp. Med.186, 955–966 (1997). ArticleCAS Google Scholar
Jongstra-Bilen, J., Harrison, R. & Grinstein, S. Fcγ-receptors induce Mac-1 (CD11b/CD18) mobilization and accumulation in the phagocytic cup for optimal phagocytosis. J. Biol. Chem.278, 45720–45729 (2003). ArticleCAS Google Scholar
Carrithers, M.D. et al. Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification. J. Immunol.178, 7822–7832 (2007). ArticleCAS Google Scholar
Holevinsky, K.O. & Nelson, D.J. Simultaneous detection of free radical release and membrane current during phagocytosis. J. Biol. Chem.270, 8328–8336 (1995). ArticleCAS Google Scholar
Mellman, I., Fuchs, R. & Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem.55, 663–700 (1986). ArticleCAS Google Scholar
Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J. & Julius, D. A capsaicin receptor homologue with a high threshold for noxious heat. Nature398, 436–441 (1999). ArticleCAS Google Scholar
Kanzaki, M. et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat. Cell Biol.1, 165–170 (1999). ArticleCAS Google Scholar
Kowase, T., Nakazato, Y., Yoko, O.H., Morikawa, A. & Kojima, I. Immunohistochemical localization of growth factor-regulated channel (GRC) in human tissues. Endocr. J.49, 349–355 (2002). ArticleCAS Google Scholar
Neeper, M.P. et al. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J. Biol. Chem.282, 15894–15902 (2007). ArticleCAS Google Scholar
Penna, A. et al. PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane. Cell Calcium39, 495–507 (2006). ArticleCAS Google Scholar
Monet, M. et al. Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim. Biophys. Acta1793, 528–539 (2009). ArticleCAS Google Scholar
Nagasawa, M., Nakagawa, Y., Tanaka, S. & Kojima, I. Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J. Cell. Physiol.210, 692–702 (2007). ArticleCAS Google Scholar
Ramsey, I.S., Delling, M. & Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol.68, 619–647 (2006). ArticleCAS Google Scholar
Juvin, V., Penna, A., Chemin, J., Lin, Y.L. & Rassendren, F.A. Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol. Pharmacol.72, 1258–1268 (2007). ArticleCAS Google Scholar
Herre, J. et al. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood104, 4038–4045 (2004). ArticleCAS Google Scholar
Khandani, A. et al. Microtubules regulate PI-3K activity and recruitment to the phagocytic cup during Fcγ receptor-mediated phagocytosis in nonelicited macrophages. J. Leukoc. Biol.82, 417–428 (2007). ArticleCAS Google Scholar
Li, B. et al. Yeast β-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J. Immunol.177, 1661–1669 (2006). ArticleCAS Google Scholar
Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science313, 347–351 (2006). ArticleCAS Google Scholar
Garcia-Garcia, E. & Rosales, C. Signal transduction during Fc receptor-mediated phagocytosis. J. Leukoc. Biol.72, 1092–1108 (2002). CASPubMed Google Scholar
Ueda, T., Rieu, P., Brayer, J. & Arnaout, M.A. Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Natl. Acad. Sci. USA91, 10680–10684 (1994). ArticleCAS Google Scholar
Di Virgilio, F., Meyer, B.C., Greenberg, S. & Silverstein, S.C. Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels. J. Cell Biol.106, 657–666 (1988). ArticleCAS Google Scholar
Campo, B., Surprenant, A. & North, R.A. Sustained depolarization and ADP-ribose activate a common ionic current in rat peritoneal macrophages. J. Immunol.170, 1167–1173 (2003). ArticleCAS Google Scholar
Vernon-Wilson, E.F. et al. CD31 delays phagocyte membrane repolarization to promote efficient binding of apoptotic cells. J. Leukoc. Biol.82, 1278–1288 (2007). ArticleCAS Google Scholar
Young, J.D., Unkeless, J.C., Kaback, H.R. & Cohn, Z.A. Mouse macrophage Fc receptor for IgG γ2b/γ1 in artificial and plasma membrane vesicles functions as a ligand-dependent ionophore. Proc. Natl. Acad. Sci. USA80, 1636–1640 (1983). ArticleCAS Google Scholar
Mao, Y.S. et al. Essential and unique roles of PIP5K-γ and -α in Fcγ receptor-mediated phagocytosis. J. Cell Biol.184, 281–296 (2009). ArticleCAS Google Scholar
Defacque, H. et al. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol. Biol. Cell13, 1190–1202 (2002). ArticleCAS Google Scholar
Schilling, T. & Eder, C. Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation. J. Neuroimmunol.216, 118–121 (2009). ArticleCAS Google Scholar
Etkovitz, N., Rubinstein, S., Daniel, L. & Breitbart, H. Role of PI3-kinase and PI4-kinase in actin polymerization during bovine sperm capacitation. Biol. Reprod.77, 263–273 (2007). ArticleCAS Google Scholar
Ishiki, M. & Klip, A. Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology146, 5071–5078 (2005). ArticleCAS Google Scholar
Indik, Z.K., Park, J.G., Hunter, S. & Schreiber, A.D. The molecular dissection of Fcγ receptor mediated phagocytosis. Blood86, 4389–4399 (1995). CASPubMed Google Scholar
Wainszelbaum, M.J., Proctor, B.M., Pontow, S.E., Stahl, P.D. & Barbieri, M.A. IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent. Exp. Cell Res.312, 2238–2251 (2006). ArticleCAS Google Scholar
Saito, M., Hanson, P.I. & Schlesinger, P. Luminal chloride-dependent activation of endosome calcium channels: patch clamp study of enlarged endosomes. J. Biol. Chem.282, 27327–27333 (2007). ArticleCAS Google Scholar
Cossart, P. & Toledo-Arana, A. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect.10, 1041–1050 (2008). ArticleCAS Google Scholar
Guer, A.D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci.22, 6408–6414 (2002). Article Google Scholar
Sobota, A. et al. Binding of IgG-opsonized particles to FcγR is an active stage of phagocytosis that involves receptor clustering and phosphorylation. J. Immunol.175, 4450–4457 (2005). ArticleCAS Google Scholar
Medh, J.D. & Weigel, P.H. Separation of phosphatidylinositols and other phospholipids by two-step one-dimensional thin-layer chromatography. J. Lipid Res.30, 761–764 (1989). CASPubMed Google Scholar
Ames, B.N. & Dubin, D.T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J. Biol. Chem.235, 769–775 (1960). CASPubMed Google Scholar