Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell109, S45–S55 (2002). ArticleCASPubMed Google Scholar
Phanuphak, P., Moorhead, J.W. & Claman, H.N. Tolerance and contact sensitivity to DNFB in mice. II. Specific in vitro stimulation with a hapten, 2,4-dinitrobenzene sulfonic acid (DNB-SO3Na). J. Immunol.112, 849–851 (1974). CASPubMed Google Scholar
Phanuphak, P., Moorhead, J.W. & Claman, H.N. Tolerance and contact sensitivity to DNFB in mice. I. In vivo detection by ear swelling and correlation with in vitro cell stimulation. J. Immunol.112, 115–123 (1974). CASPubMed Google Scholar
Crowle, A.J. Delayed hypersensitivity in mice; its detection by skin tests and its passive transfer. Science130, 159–160 (1959). CASPubMed Google Scholar
Quan, F.S., Huang, C., Compans, R.W. & Kang, S.M. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol.81, 3514–3524 (2007). CASPubMedPubMed Central Google Scholar
Herberman, R.B., Nunn, M.E. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer16, 216–229 (1975). CASPubMed Google Scholar
Herberman, R.B., Nunn, M.E., Holden, H.T. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer16, 230–239 (1975). CASPubMed Google Scholar
Lanier, L.L. NK cell recognition. Annu. Rev. Immunol.23, 225–274 (2005). CASPubMed Google Scholar
Walzer, T., Dalod, M., Robbins, S.H., Zitvogel, L. & Vivier, E. Natural-killer cells and dendritic cells: “l'union fait la force”. Blood106, 2252–2258 (2005). CASPubMed Google Scholar
Orange, J.S. Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol.6, 399–409 (2006). PubMed Google Scholar
O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. T cell– and B cell–independent adaptive immunity mediated by natural killer cells. Nat. Immunol.7, 507–516 (2006). CASPubMed Google Scholar
Paust, S., Senman, B. & von Andrian, U.H. Adaptive immune responses mediated by natural killer cells. Immunol. Rev.235, 286–296 (2010). CASPubMedPubMed Central Google Scholar
Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol.11, 1127–1135 (2010). CASPubMedPubMed Central Google Scholar
Askenase, P.W. Yes T cells, but three different T cells (αβ, γδ and NK T cells), and also B-1 cells mediate contact sensitivity. Clin. Exp. Immunol.125, 345–350 (2001). CASPubMedPubMed Central Google Scholar
Gorbachev, A.V. & Fairchild, R.L. Induction and regulation of T-cell priming for contact hypersensitivity. Crit. Rev. Immunol.21, 451–472 (2001). CASPubMed Google Scholar
Boehncke, W.H. et al. Leukocyte extravasation as a target for anti-inflammatory therapy—which molecule to choose? Exp. Dermatol.14, 70–80 (2005). CASPubMed Google Scholar
Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity2, 223–238 (1995). CASPubMed Google Scholar
DiSanto, J.P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. USA92, 377–381 (1995). ArticleCASPubMedPubMed Central Google Scholar
MacDougall, J.R., Croy, B.A., Chapeau, C. & Clark, D.A. Demonstration of a splenic cytotoxic effector cell in mice of genotype SCID/SCID.BG/BG. Cell. Immunol.130, 106–117 (1990). CASPubMed Google Scholar
Vermijlen, D. et al. High-density oligonucleotide array analysis reveals extensive differences between freshly isolated blood and hepatic natural killer cells. Eur. J. Immunol.34, 2529–2540 (2004). CASPubMed Google Scholar
Ochi, M. et al. Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology39, 1321–1331 (2004). CASPubMed Google Scholar
Ishiyama, K. et al. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology43, 362–372 (2006). CASPubMed Google Scholar
Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature436, 709–713 (2005). CASPubMed Google Scholar
Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA99, 8826–8831 (2002). CASPubMedPubMed Central Google Scholar
Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B. & Lanier, L.L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science296, 1323–1326 (2002). CASPubMed Google Scholar
Cooper, M.A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. USA106, 1915–1919 (2009). CASPubMedPubMed Central Google Scholar
Zhang, X., Sun, S., Hwang, I., Tough, D.F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity8, 591–599 (1998). CASPubMed Google Scholar
Sallusto, F. & Lanzavecchia, A. Heterogeneity of CD4+ memory T cells: Functional modules for tailored immunity. Eur. J. Immunol.39, 2076–2082 (2009). CASPubMed Google Scholar
Alvarez, D., Vollmann, E.H. & von Andrian, U.H. Mechanisms and consequences of dendritic cell migration. Immunity29, 325–342 (2008). CASPubMedPubMed Central Google Scholar
Catalina, M.D. et al. The route of antigen entry determines the requirement for L-selectin during immune responses. J. Exp. Med.184, 2341–2351 (1996). CASPubMedPubMed Central Google Scholar
Bajenoff, M. et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med.203, 619–631 (2006). CASPubMedPubMed Central Google Scholar
Jenne, C.N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med.206, 2469–2481 (2009). CASPubMedPubMed Central Google Scholar
Morris, M.A. & Ley, K. Trafficking of natural killer cells. Curr. Mol. Med.4, 431–438 (2004). CASPubMed Google Scholar
Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol.3, e113 (2005). PubMedPubMed Central Google Scholar
Hunger, R.E., Yawalkar, N., Braathen, L.R. & Brand, C.U. The HECA-452 epitope is highly expressed on lymph cells derived from human skin. Br. J. Dermatol.141, 565–569 (1999). CASPubMed Google Scholar
Carbone, T. et al. CD56highCD16−CD62L− NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. J. Immunol.184, 1102–1110 (2010). CASPubMed Google Scholar
Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity12, 665–676 (2000). CASPubMed Google Scholar
Buentke, E. et al. Natural killer and dendritic cell contact in lesional atopic dermatitis skin—Malassezia-influenced cell interaction. J. Invest. Dermatol.119, 850–857 (2002). CASPubMed Google Scholar
van der Voort, R. et al. An alternatively spliced CXCL16 isoform expressed by dendritic cells is a secreted chemoattractant for CXCR6+ cells. J. Leukoc. Biol.87, 1029–1039 (2010). CASPubMedPubMed Central Google Scholar
Calabresi, P.A., Yun, S.H., Allie, R. & Whartenby, K.A. Chemokine receptor expression on MBP-reactive T cells: CXCR6 is a marker of IFNγ-producing effector cells. J. Neuroimmunol.127, 96–105 (2002). CASPubMed Google Scholar
Raulet, D.H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol.3, 781–790 (2003). CASPubMed Google Scholar
Ferlazzo, G. et al. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol.33, 306–313 (2003). CASPubMed Google Scholar
Jinushi, M. et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. Immunology120, 73–82 (2007). CASPubMedPubMed Central Google Scholar
Nocentini, G., Ronchetti, S., Cuzzocrea, S. & Riccardi, C. GITR/GITRL: more than an effector T cell co-stimulatory system. Eur. J. Immunol.37, 1165–1169 (2007). CASPubMed Google Scholar
Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol.5, 1260–1265 (2004). CASPubMed Google Scholar
Gao, N., Dang, T. & Yuan, D. IFN-gamma-dependent and -independent initiation of switch recombination by NK cells. J. Immunol.167, 2011–2018 (2001). CASPubMed Google Scholar
Lunemann, A., Lunemann, J.D. & Munz, C. Regulatory NK-cell functions in inflammation and autoimmunity. Mol. Med.15, 352–358 (2009). CASPubMedPubMed Central Google Scholar
Namekawa, T. et al. Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. J. Immunol.165, 1138–1145 (2000). CASPubMed Google Scholar
Martin, M.P. et al. Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J. Immunol.169, 2818–2822 (2002). CASPubMed Google Scholar
Momot, T. et al. Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum.50, 1561–1565 (2004). CASPubMed Google Scholar
Suzuki, Y. et al. Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris. J. Invest. Dermatol.122, 1133–1136 (2004). CASPubMed Google Scholar
Hedman, M., Faresjo, M., Axelsson, S., Ludvigsson, J. & Casas, R. Impaired CD4 and CD8 T cell phenotype and reduced chemokine secretion in recent-onset type 1 diabetic children. Clin. Exp. Immunol.153, 360–368 (2008). CASPubMedPubMed Central Google Scholar
Kim, J.V. et al. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J. Immunol. Methods352, 89–100 (2009). PubMedPubMed Central Google Scholar
Ivakine, E.A. et al. Molecular genetic analysis of the Idd4 locus implicates the IFN response in type 1 diabetes susceptibility in nonobese diabetic mice. J. Immunol.176, 2976–2990 (2006). CASPubMed Google Scholar
Garcia, G.E. et al. Inhibition of CXCL16 attenuates inflammatory and progressive phases of anti-glomerular basement membrane antibody-associated glomerulonephritis. Am. J. Pathol.170, 1485–1496 (2007). CASPubMedPubMed Central Google Scholar
Sordi, V. et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood106, 419–427 (2005). CASPubMed Google Scholar
Teramoto, K. et al. Microarray analysis of glomerular gene expression in murine lupus nephritis. J. Pharmacol. Sci.106, 56–67 (2008). CASPubMed Google Scholar
Ruth, J.H. et al. CXCL16-mediated cell recruitment to rheumatoid arthritis synovial tissue and murine lymph nodes is dependent upon the MAPK pathway. Arthritis Rheum.54, 765–778 (2006). CASPubMedPubMed Central Google Scholar
Aslanian, A.M. & Charo, I.F. Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation114, 583–590 (2006). CASPubMed Google Scholar
Galkina, E. & Ley, K. Leukocyte influx in atherosclerosis. Curr. Drug Targets8, 1239–1248 (2007). CASPubMed Google Scholar
Wuttge, D.M. et al. CXCL16/SR-PSOX is an interferon-γ-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol.24, 750–755 (2004). CASPubMed Google Scholar
Jiang, X. et al. Cutting edge: critical role of CXCL16/CXCR6 in NKT cell trafficking in allograft tolerance. J. Immunol.175, 2051–2055 (2005). CASPubMed Google Scholar
Bouazzaoui, A. et al. Chemokine and chemokine receptor expression analysis in target organs of acute graft-versus-host disease. Genes Immun.10, 687–701 (2009). CASPubMed Google Scholar
Matsumura, K. et al. Radioimmunoscintigraphy of pancreatic cancer in tumor-bearing athymic nude mice using 99mtechnetium-labeled anti-KL-6/MUC1 antibody. Radiat. Med.26, 133–139 (2008). CASPubMed Google Scholar
Seidl, H. et al. Profiles of chemokine receptors in melanocytic lesions: de novo expression of CXCR6 in melanoma. Hum. Pathol.38, 768–780 (2007). CASPubMed Google Scholar
Gutwein, P. et al. Tumoural CXCL16 expression is a novel prognostic marker of longer survival times in renal cell cancer patients. Eur. J. Cancer45, 478–489 (2009). CASPubMed Google Scholar
Wang, J., Lu, Y., Koch, A.E., Zhang, J. & Taichman, R.S. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res.68, 10367–10376 (2008). CASPubMedPubMed Central Google Scholar
Meijer, J. et al. The chemokine receptor CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation. Cancer Res.68, 4701–4708 (2008). CASPubMed Google Scholar
Liao, F. et al. STRL33, A novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med.185, 2015–2023 (1997). CASPubMedPubMed Central Google Scholar
Limou, S. et al. Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to AIDS. J. Infect. Dis.202, 908–915 (2010). CASPubMedPubMed Central Google Scholar
Blaak, H. et al. CCR5, GPR15, and CXCR6 are major coreceptors of human immunodeficiency virus type 2 variants isolated from individuals with and without plasma viremia. J. Virol.79, 1686–1700 (2005). CASPubMedPubMed Central Google Scholar
Duggal, P. et al. Genetic influence of CXCR6 chemokine receptor alleles on PCP-mediated AIDS progression among African Americans. Genes Immun.4, 245–250 (2003). CASPubMed Google Scholar
Scalzo, A.A., Manzur, M., Forbes, C.A., Brown, M.G. & Shellam, G.R. NK gene complex haplotype variability and host resistance alleles to murine cytomegalovirus in wild mouse populations. Immunol. Cell Biol.83, 144–149 (2005). CASPubMed Google Scholar
Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol.7, 517–523 (2006). CASPubMed Google Scholar
Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature409, 1055–1060 (2001). CASPubMed Google Scholar
Yokoyama, W.M. & Kim, S. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol. Rev.214, 143–154 (2006). CASPubMed Google Scholar
Bjorkstrom, N.K. et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med208, 13–21 (2011). PubMedPubMed Central Google Scholar
Martin, M.P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet.31, 429–434 (2002). CASPubMed Google Scholar
Khakoo, S.I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science305, 872–874 (2004). CASPubMed Google Scholar
Reeves, R.K. et al. CD16- natural killer cells: enrichment in mucosal and secondary lymphoid tissues and altered function during chronic SIV infection. Blood115, 4439–4446 (2011). Google Scholar
Berahovich, R.D., Lai, N.L., Wei, Z., Lanier, L.L. & Schall, T.J. Evidence for NK cell subsets based on chemokine receptor expression. J. Immunol.177, 7833–7840 (2006). CASPubMed Google Scholar
Cooper, M.D. & Alder, M.N. The evolution of adaptive immune systems. Cell124, 815–822 (2006). CASPubMed Google Scholar
Vosshenrich, C.A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol.7, 1217–1224 (2006). CASPubMed Google Scholar
Fernandez-Busquets, X. & Burger, M.M. The main protein of the aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera is highly polymorphic. J. Biol. Chem.272, 27839–27847 (1997). CASPubMed Google Scholar
Joly, E. Various hypotheses on MHC evolution suggested by the concerted evolution of CD94L and MHC class Ia molecules. Biol. Direct1, 3 (2006). PubMedPubMed Central Google Scholar
Zucchetti, I. et al. ciCD94–1, an ascidian multipurpose C-type lectin-like receptor expressed in Ciona intestinalis hemocytes and larval neural structures. Differentiation76, 267–282 (2008). CASPubMed Google Scholar
Flajnik, M.F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet11, 47–59 (2010). CASPubMed Google Scholar
Uinuk-Ool, T.S. et al. Phylogeny of antigen-processing enzymes: cathepsins of a cephalochordate, an agnathan and a bony fish. Scand. J. Immunol.58, 436–448 (2003). CASPubMed Google Scholar
Uinuk-ool, T.S. et al. Identification and characterization of a TAP-family gene in the lamprey. Immunogenetics55, 38–48 (2003). CASPubMed Google Scholar
Tsutsui, S., Nakamura, O. & Watanabe, T. Lamprey (Lethenteron japonicum) IL-17 upregulated by LPS-stimulation in the skin cells. Immunogenetics59, 873–882 (2007). CASPubMed Google Scholar
von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol.3, 867–878 (2003). CASPubMed Google Scholar
Galkina, E. et al. CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-γ production, and macrophage accumulation in the aortic wall. Circulation116, 1801–1811 (2007). CASPubMed Google Scholar
Latta, M., Mohan, K. & Issekutz, T.B. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis. Immunology121, 555–564 (2007). CASPubMedPubMed Central Google Scholar
Diegelmann, J. et al. Expression and regulation of the chemokine CXCL16 in Crohn's disease and models of intestinal inflammation. Inflamm. Bowel Dis.16, 1871–1881 (2010). PubMed Google Scholar
Matsumura, S. et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol.181, 3099–3107 (2008). CASPubMed Google Scholar
Liao, F. et al. STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med.185, 2015–2023 (1997). CASPubMedPubMed Central Google Scholar
Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol.174, 1055–1062 (2005). CASPubMed Google Scholar
Sato, T. et al. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J. Immunol.174, 277–283 (2005). CASPubMed Google Scholar
Oh, S.T., Schramme, A., Tilgen, W., Gutwein, P. & Reichrath, J. Overexpression of CXCL16 in lesional psoriatic skin. Dermatoendocrinol.1, 114–118 (2009). CASPubMedPubMed Central Google Scholar
Martini, G. et al. CXCR6-CXCL16 interaction in the pathogenesis of Juvenile Idiopathic Arthritis. Clin. Immunol.129, 268–276 (2008). CASPubMed Google Scholar
van der Voort, R. et al. Elevated CXCL16 expression by synovial macrophages recruits memory T cells into rheumatoid joints. Arthritis Rheum.52, 1381–1391 (2005). CASPubMed Google Scholar
Nanki, T. et al. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum.52, 3004–3014 (2005). CASPubMed Google Scholar