- Rudolph, M.G., Stanfield, R.L. & Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).
Article CAS PubMed Google Scholar
- Takada, K. & Jameson, S.C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).
CAS PubMed Google Scholar
- Harkiolaki, M. et al. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 30, 348–357 (2009).
Article CAS PubMed Google Scholar
- Hogquist, K.A., Baldwin, T.A. & Jameson, S.C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).
Article CAS PubMed Google Scholar
- Godfrey, D.I. et al. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin. Immunol. 22, 61–67 (2010).
Article CAS PubMed Google Scholar
- Godfrey, D.I. & Rossjohn, J. New ways to turn on NKT cells. J. Exp. Med. 208, 1121–1125 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Cerundolo, V., Silk, J.D., Masri, S.H. & Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9, 28–38 (2009).
Article CAS PubMed Google Scholar
- Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).
Article CAS PubMed Google Scholar
- Gumperz, J.E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).
Article CAS PubMed Google Scholar
- Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).
Article CAS PubMed Google Scholar
- Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44–49 (2007).
Article CAS PubMed Google Scholar
- Pellicci, D.G. et al. Differential recognition of CD1d-α-galactosyl ceramide by the Vβ8.2 and Vβ7 semi-invariant NKT T cell receptors. Immunity 31, 47–59 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Wun, K.S. et al. A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 34, 327–339 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Aspeslagh, S. et al. Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO J. 30, 2294–2305 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Uldrich, A.P. et al. A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen–recognition properties. Nat. Immunol. 12, 616–623 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Li, Y. et al. The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J. Exp. Med. 207, 2383–2393 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Chiu, Y.H. et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail–truncated CD1d. Nat. Immunol. 3, 55–60 (2002).
Article CAS PubMed Google Scholar
- Brigl, M. & Brenner, M.B. How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin. Immunol. 22, 79–86 (2010).
Article CAS PubMed Google Scholar
- Ortaldo, J.R. et al. Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol. 172, 943–953 (2004).
Article CAS PubMed Google Scholar
- Parekh, V.V. et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J. Immunol. 173, 3693–3706 (2004).
Article CAS PubMed Google Scholar
- Matulis, G. et al. Innate-like control of human iNKT cell autoreactivity via the hypervariable CDR3β loop. PLoS Biol. 8, e1000402 (2010).
Article PubMed PubMed Central Google Scholar
- Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).
Article CAS PubMed Google Scholar
- Wu, D.Y., Segal, N.H., Sidobre, S., Kronenberg, M. & Chapman, P.B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173–181 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Koch, M. et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nat. Immunol. 6, 819–826 (2005).
Article CAS PubMed Google Scholar
- Zajonc, D.M. et al. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat. Immunol. 6, 810–818 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Zajonc, D.M. et al. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J. Exp. Med. 202, 1517–1526 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Zajonc, D.M., Savage, P.B., Bendelac, A., Wilson, I.A. & Teyton, L. Crystal structures of mouse CD1d-iGb3 complex and its cognate Vα14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J. Mol. Biol. 377, 1104–1116 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Mallevaey, T. et al. T cell receptor CDR2β and CDR3β loops collaborate functionally to shape the iNKT cell repertoire. Immunity 31, 60–71 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Mallevaey, T. et al. A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity 34, 315–326 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Wei, D.G., Curran, S.A., Savage, P.B., Teyton, L. & Bendelac, A. Mechanisms imposing the Vβ bias of Vα14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med. 203, 1197–1207 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Christiansen, D. et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol. 6, e172 (2008).
Article PubMed PubMed Central Google Scholar
- Porubsky, S. et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl. Acad. Sci. USA 104, 5977–5982 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Gapin, L. iNKT cell autoreactivity: what is 'self' and how is it recognized? Nat. Rev. Immunol. 10, 272–277 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Speak, A.O. et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc. Natl. Acad. Sci. USA 104, 5971–5976 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Schümann, J., Mycko, M.P., Dellabona, P., Casorati, G. & Macdonald, H.R. Cutting edge: influence of the TCR Vβ domain on the selection of semi-invariant NKT cells by endogenous ligands. J. Immunol. 176, 2064–2068 (2006).
Article PubMed Google Scholar
- Brigl, M. et al. Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol. 176, 3625–3634 (2006).
Article CAS PubMed Google Scholar
- Xia, C. et al. Modification of the ceramide moiety of isoglobotrihexosylceramide on its agonist activity in stimulation of invariant natural killer T cells. J. Med. Chem. 50, 3489–3496 (2007).
Article CAS PubMed Google Scholar
- Florence, W.C. et al. Adaptability of the semi-invariant natural killer T-cell receptor towards structurally diverse CD1d-restricted ligands. EMBO J. 28, 3579–3590 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Colf, L.A. et al. How a single T cell receptor recognizes both self and foreign MHC. Cell 129, 135–146 (2007).
Article CAS PubMed Google Scholar
- Macdonald, W.A. et al. T cell allorecognition via molecular mimicry. Immunity 31, 897–908 (2009).
Article CAS PubMed Google Scholar
- Tynan, F.E. et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nat. Immunol. 8, 268–276 (2007).
Article CAS PubMed Google Scholar
- Yin, N. et al. Alpha anomers of iGb3 and Gb3 stimulate cytokine production by natural killer T cells. ACS Chem. Biol. 4, 191–197 (2009).
Article CAS Google Scholar
- Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. & Dwek, R.A. Glycosylation and the immune system. Science 291, 2370–2376 (2001).
Article CAS PubMed Google Scholar
- Petrescu, A.-J., Milac, A.-L., Petrescu, S.M., Dwek, R.A. & Wormald, M.R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004).
Article CAS PubMed Google Scholar
- Scott-Browne, J.P. et al. Germline-encoded recognition of diverse glycolipids by NKT cells. Nat. Immunol. 8, 1105–1113 (2007).
Article CAS PubMed Google Scholar
- Arden, B. et al. Mouse T-cell receptor variable gene segment families. Immunogenetics. 42, 455–500 (1995).
CAS PubMed Google Scholar
- Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).
Article PubMed Google Scholar
- Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
Article PubMed Google Scholar
- Zwart, P.H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).
Article CAS PubMed Google Scholar
- CCP4 (Collaborative Computational Project, 4). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).